Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2009_2_1_a1, author = {Ivan V. Shestakov and Alexander A. Shlapunov}, title = {Negative {Sobolev} {Spaces} in the {Cauchy} {Problem} for the {Cauchy--Riemann} {Operator}}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {17--30}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a1/} }
TY - JOUR AU - Ivan V. Shestakov AU - Alexander A. Shlapunov TI - Negative Sobolev Spaces in the Cauchy Problem for the Cauchy--Riemann Operator JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2009 SP - 17 EP - 30 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a1/ LA - en ID - JSFU_2009_2_1_a1 ER -
%0 Journal Article %A Ivan V. Shestakov %A Alexander A. Shlapunov %T Negative Sobolev Spaces in the Cauchy Problem for the Cauchy--Riemann Operator %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2009 %P 17-30 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a1/ %G en %F JSFU_2009_2_1_a1
Ivan V. Shestakov; Alexander A. Shlapunov. Negative Sobolev Spaces in the Cauchy Problem for the Cauchy--Riemann Operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a1/
[1] S. L. Sobolev, Equations of Mathematical Physics, Fizmatgiz, Moscow, 1954 (Russian) | MR
[2] O. A. Ladyzhenskaya, Boundary Value Problems for Equations of Mathematical Physics, Nauka, Moscow, 1973 (Russian) | MR
[3] M. Schechter, “Negative norms and boundary problems”, Ann. Math., 72:3 (1960), 581–593 | DOI | MR | Zbl
[4] N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995 | MR | Zbl
[5] E. J. Straube, “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11:4 (1984), 559–591 | MR | Zbl
[6] J. Hadamard, Le problème de Cauchy et les equations aux derivées partielles linéares hyperboliques, Gauthier-Villars, Paris, 1932 | Zbl
[7] L. A. Aizenberg, Carleman's Formulas in Complex Analysis. First Applications, Kluwer, Dordreht–Boston–London, 1993
[8] T. Carleman, Les Fonctions Quasianalytiques, Gauthier-Villars, Paris, 1926 | Zbl
[9] L. A. Aizenberg, A. M. Kytmanov, “On possibility of holomorphic extension to a domain of functions, given on a part of its boundary”, Mat. USSR–Sb., 72:2 (1992), 467–483 | DOI | MR
[10] A. A. Shlapunov, N. N. Tarkhanov, “On the Cauchy problem for holomorphic functions of the Lebesque class $L^2$ in a domain”, Sib. Math. J., 33:5 (1992), 914–922 | DOI | MR | Zbl
[11] D. P. Fedchenko, A. A. Shlapunov, “On the Cauchy problem for multi-dimensional Cauchy–Riemann operator in Lebesque $L^2$ in a domain”, Mat. Sb., 199:11 (2008), 141–160 (Russian)
[12] L. Hörmander, Notions of Convexity, Birkhäuser Verlag, Berlin, 1994 | MR | Zbl
[13] G. M. Khenkin, “Integral Representation Method in Complex Analysis”, Results of Science and Technics. Modern problems of Mathematics. Fundamental Directions, 7, VINITI, Moscow, 1985, 23–124 | MR
[14] A. M. Kytmanov, The Bochner–Martinelli Integral and its Applications, Birkhäuser Verlag, Basael–Boston–Berlin, 1995 | MR | Zbl
[15] Yu. V. Egorov, M. A. Shubin, “Linear Partial Differential equations. Foundations of Classical Theory”, Results of Science and Technics. Modern problems of Mathtmatics. Fundamental Directions, 30, VINITI, Moscow, 1988 | MR
[16] R. A. Adams, Sobolev Spaces, Academic Press. Inc., Boston et al., 1978 | Zbl
[17] A. A. Shlapunov, N. N. Tarkhanov, “Duality by reproducing kernels”, Internat. J. Math. Math. Sci., 2003:6 (2003), 327–395 | DOI | MR | Zbl
[18] E. M. Chirka, “Analytic representation of $CR$-functions”, Mat. Sb., 98(140):4 (1975), 591–623 | MR | Zbl