A Hybrid of Tense Logic $S4_T$ and Multi-Agent Logic with Interacting Agents
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 399-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce a temporal multi-agent logic $S4_T^\mathcal{IA}$, which implements interacting agents. Logic $S4_T^\mathcal{IA}$ is defined semantically as the set of all formulas of the appropriate propositional language that are valid in special Kripke models. The models are based on $S4$-like time frames, i.e., with reflexive and transitive time-accessibility relations. Agents knowledge-accessibility relations $R_i$, defined independently for each individual agent, are $S5$-relations on $R$-time clusters, and interaction of the agents consists of passing knowledge along arbitrary paths of such relations. The key result of the paper is an algorithm for checking satisfiability and recognizing theorems of $S4_T^\mathcal{IA}$. We also prove the effective finite model property for the logic $S4_T^\mathcal{IA}$.
Keywords: multi-agent logics, tense logics, knowledge representation, satisfiability, decidability, inference rules.
@article{JSFU_2008_1_4_a4,
     author = {Vladimir V. Rybakov and Sergej V. Babenyshev},
     title = {A {Hybrid} of {Tense} {Logic} $S4_T$ and {Multi-Agent} {Logic} with {Interacting} {Agents}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {399--409},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a4/}
}
TY  - JOUR
AU  - Vladimir V. Rybakov
AU  - Sergej V. Babenyshev
TI  - A Hybrid of Tense Logic $S4_T$ and Multi-Agent Logic with Interacting Agents
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 399
EP  - 409
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a4/
LA  - en
ID  - JSFU_2008_1_4_a4
ER  - 
%0 Journal Article
%A Vladimir V. Rybakov
%A Sergej V. Babenyshev
%T A Hybrid of Tense Logic $S4_T$ and Multi-Agent Logic with Interacting Agents
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 399-409
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a4/
%G en
%F JSFU_2008_1_4_a4
Vladimir V. Rybakov; Sergej V. Babenyshev. A Hybrid of Tense Logic $S4_T$ and Multi-Agent Logic with Interacting Agents. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 399-409. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a4/

[1] H. Barringer, M. Fisher, D. Gabbay, G. Gough, Advances in Temporal Logic, Appl. Logic Ser., 16, Kluwer Academic Publ., Dordrecht, 1999 | MR

[2] R. H. Bordini, M. Fisher, W. Visser, M. Wooldridge, “Model Checking Rational Agents”, IEEE Intelligent Systems, 19:4 (2004), 46–52 | DOI

[3] J. Dix, M. Fisher, H. Levesque, L. Sterling, “Special Issue on Logic–Based Agent Implementation, Editorial”, Ann. Math. Artificial Intelligence, 41:2–4 (2004), 131–133 | DOI | MR

[4] R. Fagin, J. Geanakoplos, J. Halpern, M. Y. Vardi, “The Hierarchical Approach to Modeling Knowledge and Common Knowledge”, International J. Game Theory, 28:3 (1999), 331–365 | DOI | MR | Zbl

[5] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, 1995 | MR | Zbl

[6] M. Fisher, “Temporal Development Methods for Agent-Based Systems”, J. Autonomous Agents Multi-Agent Systems, 10:1 (2005), 41–66 | DOI

[7] D. M. Gabbay, I. M. Hodkinson, “An Axiomatisation of the Temporal Logic with Until and Since over the Real Numbers”, J. Logic Computation, 1 (1990), 229–260 | DOI | MR

[8] R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes, 7, Stanford Uviv., Stanford, CA, 1992 | MR

[9] W. van der Hoek, M. Wooldridge, “Towards a Logic of Rational Agency”, Log. J. IGPL, 11:2 (2003), 135–159 | DOI | MR | Zbl

[10] J. Halpern, R. Shore, “Reasoning about Common Knowledge with Infinitely Many Agents”, Inform. Comput., 191:1 (2004), 1–40 | DOI | MR | Zbl

[11] J. Y. Halpern, “Reasoning about knowledge: A survey”, Handbook of Logic in Articial Intelligence and Logic Programming, Vol. 4, Oxford Univ. Press, New York, 1995, 1–34 | MR

[12] J. Hendler, “Agents and the Semantic Web”, IEEE Intelligent Systems, 16:2 (2001), 30–37 | DOI

[13] I. Hodkinson, “Temporal Logic and Automata”, Chapter II of Temporal Logic, Mathematical Foundations and Computational Aspects, Vol. 2, Clarendon Press, Oxford, 2000, 30–72

[14] V. V. Rybakov, “A Criterion for Admissibility of Rules in the Modal System $S4$ and the Intuitionistic Logic”, Algebra and Logic, 23:5 (1984), 369 – 384 (Engl. Translation) | DOI | MR | Zbl

[15] V. V. Rybakov, Admissible of Logical Inference Rules, Stud. Logic Found. Math., 136, Elsevier Sci. Publ., North-Holland, 1997 | MR | Zbl

[16] V. V. Rybakov, “Logical Consecutions in Intransitive Temporal Linear Logic of Finite Intervals”, J. Logic Computation, 15:5 (2005), 633–657 | DOI | MR

[17] V. V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl

[18] V. V. Rybakov, “Linear Temporal Logic with Until and Before on Integer Numbers, Deciding Algorithms”, Computer Science – Theory and Applications, Lecture Notes in Computer Sci., 3967, Springer, Berlin–Heidelberg, 2006, 322–334 | MR

[19] V. V. Rybakov, “Until-Since Temporal logic Based on Parallel Time with Common Past. Dedecinding algorithms”, Logical Foundations of Computer Science, LFCS'07, New York, Lecture Notes in Computer Sci., 4514, Springer, Berlin–Heidelberg, 2007, 486–497 | MR | Zbl

[20] V. Rybakov, “Multi-Agent Logics with Interacting Agents Based on Linear Temporal Logic. Deciding Algorithms”, ICAISC 2008 (International Conference on Artificial Intelligence and Soft Computing), accepted, to be published at LNCS, Springer

[21] J. Benthem, J. A. Bergstra, “Logic of Transition Systems”, J. Logic, Language and Information, 3:4 (1994), 247–283 | DOI | MR

[22] J. van Benthem, The Logic of Time, Kluwer Acad. Publ., Dordrecht, 1991 | MR

[23] M. Wooldridge, G. Weiss, P. Ciancarini (ed.), Agent-Oriented Software Engineering II, Lecture Notes in Computer Sci., 2222, Springer, Berlin–Heidelberg, 2001

[24] M. Wooldridge, P. E. Dunne, “The Computational Complexity of Agent Verification”, Intelligent Agents VIII, Lecture Notes in Comuter Sci., 2333, Springer, Berlin–Heidelberg, 2002, 115–127 | Zbl