Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 380-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

Up to standard multipliers all non-standard automorphisms of free associative algebras and polynomial algebras are reduced to monic automorphisms of the maximal ideal, which are studied in the present paper. For non-standard automorphisms of some locally nilpotent matrix groups and rings it has turned out to be more efficient to use hypercentral automorphisms.
Keywords: free associative algebra, finitary Chevalley group, unipotent subgroup, associated Lie ring, Jordan ring
Mots-clés : polynomial algebra, automorphism.
@article{JSFU_2008_1_4_a2,
     author = {Chander K. Gupta and Vladimir M. Levchuk and Yurij Yu. Ushakov},
     title = {Hypercentral and {Monic} {Automorphisms} of {Classical} {Algebras,} {Rings} and {Groups}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {380--390},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a2/}
}
TY  - JOUR
AU  - Chander K. Gupta
AU  - Vladimir M. Levchuk
AU  - Yurij Yu. Ushakov
TI  - Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 380
EP  - 390
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a2/
LA  - en
ID  - JSFU_2008_1_4_a2
ER  - 
%0 Journal Article
%A Chander K. Gupta
%A Vladimir M. Levchuk
%A Yurij Yu. Ushakov
%T Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 380-390
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a2/
%G en
%F JSFU_2008_1_4_a2
Chander K. Gupta; Vladimir M. Levchuk; Yurij Yu. Ushakov. Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 380-390. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a2/

[1] R. Dubish, S. Perlis, “On total nilpotent algebras”, Amer. J. Math., 73:3 (1951), 439–452 | DOI | MR

[2] V. M. Levchuk, “Chevalley groups and their unipotent subgroups”, Contemp. Math., 131:1 (1992), 227–242 | MR | Zbl

[3] V. M. Levchuk, “Connections between an unitriangular group and some rings. Part 2. The automorphism groups”, Siberian Mat. Zh., 24:4 (1983), 543–557 (Russian) | DOI | MR | Zbl

[4] Kourovka Notebook, 15th Ed., NGU, Novosibirsk, 2002 (Russian) | MR

[5] A. G. Chernyakiewicz, “Automorphisms of a free associative algebra of rank 2. I”, Trans. Amer. Math. Soc., 160 (1971), 393–401 ; “Automorphisms of a free associative algebra of rank 2. II”, 171 (1972), 309–315 | DOI | MR | DOI | MR

[6] P. M. Cohn, Free rings and their relations, 2nd Ed., Academic Press, London, 1985 | MR | Zbl

[7] C. K. Gupta, N. D. Gupta, “Lifting primitivity of free nilpotent groups”, Proc. Amer. Math. Soc., 114:3 (1992), 617–621 | DOI | MR | Zbl

[8] C. K. Gupta, “Lifting primitivity of certain relativey free groups”, Contemp. Math., 184 (1995), 139–145 | MR | Zbl

[9] V. M. Levchuk, “Some locally nilpotent rings and their adjoint groups”, Mat. Zametki, 42:5 (1987), 631–641 (Russian) | MR | Zbl

[10] Yu. I. Merzlyakov, “Equisubgroups of unitriangular groups: a criterion of self normalizability”, Dokl. Russian Akad. Nauk, 50:3 (1995), 507–511 | MR

[11] I. N. Herstein, “Jordan Homomorphisms”, Trans. Amer. Math. Soc., 81 (1956), 331–351 | DOI | MR

[12] X. T. Wang, “Decomposition of Jordan automorphisms of strictly triangular matrix algebra over commutative rings”, Commun. Algebra, 35 (2007), 1133–1140 | DOI | MR | Zbl

[13] V. M. Levchuk, “Jordan and Lie niltriangular matrix rings: isomorphisms, elementary equivalence and related questions”, Proc. of Int. Algebraic Conf., MSU, Moscow, 2008, 154–155

[14] A. S. Kondratyev, “Subgroups of finite Chevalley groups”, Uspekhi Mat. Nauk, 41:1 (1986), 57–96 (Russian) | MR | Zbl

[15] V. M. Levchuk, G. S. Suleymanova, “The normal structure of the unipotent subgroup of Lie type groups and closely-related questions”, Dokl. Russian Akad. Nauk, 419:5 (2008), 595–598 | Zbl

[16] M. Nagata, On Automorphism Group of $k[x,y]$, Lect. in Math., Kyoto Univ, Kinokuniya, Tokio, 1972 | MR | Zbl

[17] I. P. Shestakov, U. U. Umirbaev, “The Nagata automorphism is wild”, Proc. Nat. Acad. Sci. USA, 100:22 (2003), 12561–12563 | DOI | MR | Zbl

[18] U. U. Umirbaev, “Defining relations of a group of tame automorphisms of polynomial rings and wild automorphisms of free associative algebras”, Dokl. Russian Akad. Nauk, 407:3 (2006), 319–324 | MR

[19] R. Crowel, R. Fox, Knot theory, Mir, Moscow, 1967 | Zbl

[20] V. A. Roman'kov, “The inverse function theorem for free associative algebras”, Siberian Mat. Zh., 45:5 (2004), 1178–1183 (Russian) | MR | Zbl