On the Structure of Periodic Groups Saturated by Semidihedral Groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 329-334
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak R$ be a set of finite groups. A group $G$ is said to be saturated by $\mathfrak R$, if every finite subgroup of $G$ is contained in a subgroup isomorphic to a group in $\mathfrak R$. We prove that a periodic group saturated a set containing semidihedral groups is a locally finite group.
Keywords:
periodic group, semidihedral group.
@article{JSFU_2008_1_3_a12,
author = {Lyajsan R. Tukhvatullina and Anatoly K. Shlepkin},
title = {On the {Structure} of {Periodic} {Groups} {Saturated} by {Semidihedral} {Groups}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {329--334},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/}
}
TY - JOUR AU - Lyajsan R. Tukhvatullina AU - Anatoly K. Shlepkin TI - On the Structure of Periodic Groups Saturated by Semidihedral Groups JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2008 SP - 329 EP - 334 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/ LA - ru ID - JSFU_2008_1_3_a12 ER -
%0 Journal Article %A Lyajsan R. Tukhvatullina %A Anatoly K. Shlepkin %T On the Structure of Periodic Groups Saturated by Semidihedral Groups %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2008 %P 329-334 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/ %G ru %F JSFU_2008_1_3_a12
Lyajsan R. Tukhvatullina; Anatoly K. Shlepkin. On the Structure of Periodic Groups Saturated by Semidihedral Groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 329-334. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/