On the Structure of Periodic Groups Saturated by Semidihedral Groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 329-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak R$ be a set of finite groups. A group $G$ is said to be saturated by $\mathfrak R$, if every finite subgroup of $G$ is contained in a subgroup isomorphic to a group in $\mathfrak R$. We prove that a periodic group saturated a set containing semidihedral groups is a locally finite group.
Keywords: periodic group, semidihedral group.
@article{JSFU_2008_1_3_a12,
     author = {Lyajsan R. Tukhvatullina and Anatoly K. Shlepkin},
     title = {On the {Structure} of {Periodic} {Groups} {Saturated} by {Semidihedral} {Groups}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {329--334},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/}
}
TY  - JOUR
AU  - Lyajsan R. Tukhvatullina
AU  - Anatoly K. Shlepkin
TI  - On the Structure of Periodic Groups Saturated by Semidihedral Groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 329
EP  - 334
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/
LA  - ru
ID  - JSFU_2008_1_3_a12
ER  - 
%0 Journal Article
%A Lyajsan R. Tukhvatullina
%A Anatoly K. Shlepkin
%T On the Structure of Periodic Groups Saturated by Semidihedral Groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 329-334
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/
%G ru
%F JSFU_2008_1_3_a12
Lyajsan R. Tukhvatullina; Anatoly K. Shlepkin. On the Structure of Periodic Groups Saturated by Semidihedral Groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 329-334. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a12/

[1] A. K. Shlepkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Sb. tez. 3-i mezhdunar. konf. po algebre (23–28 avgusta 1993), Krasnoyarsk, 369

[2] A. G. Rubashkin, Gruppy, nasyschennye zadannymi mnozhestvami konechnykh grupp, Dis. ... kand. fiz.-mat.nauk, Krasnoyarsk, 2006

[3] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–494

[4] D. V. Lytkina, “Stroenie gruppy, poryadki elementov kotoroi ne prevoskhodyat chisla 4”, Matematicheskie sistemy, 2005, no. 4, 602–617

[5] I. N. Sanov, “Resheniya problem Bernsaida dlya perioda 4”, Uchen. zapiski LGU. Ser. Matem., 1940, no. 10, 166–170 | MR | Zbl

[6] M. I. Kargapolov, Yu. V. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl