Multi-Logarithmic Differential Forms on Complete Intersections
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 105-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a complex $\Omega_S^\bullet(\log C)$ of sheaves of multi-logarithmic differential forms on a complex analytic manifold $S$ with respect to a reduced complete intersection $C\subset S$, and define the residue map as a natural morphism from this complex onto the Barlet complex $\omega_C^\bullet$ of regular meromorphic differential forms on $C$. It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.
Keywords: complete intersection, multi-logarithmic differential forms, regular meromorphic differential forms, Poincaré residue, logarithmic residue, Grothendieck duality, residue current.
@article{JSFU_2008_1_2_a0,
     author = {Alexandr G. Aleksandrov and Avgust K. Tsikh},
     title = {Multi-Logarithmic {Differential} {Forms} on {Complete} {Intersections}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {105--124},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a0/}
}
TY  - JOUR
AU  - Alexandr G. Aleksandrov
AU  - Avgust K. Tsikh
TI  - Multi-Logarithmic Differential Forms on Complete Intersections
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 105
EP  - 124
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a0/
LA  - en
ID  - JSFU_2008_1_2_a0
ER  - 
%0 Journal Article
%A Alexandr G. Aleksandrov
%A Avgust K. Tsikh
%T Multi-Logarithmic Differential Forms on Complete Intersections
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 105-124
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a0/
%G en
%F JSFU_2008_1_2_a0
Alexandr G. Aleksandrov; Avgust K. Tsikh. Multi-Logarithmic Differential Forms on Complete Intersections. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 105-124. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a0/

[1] A. G. Aleksandrov, “Non-isolated hypersurface singularities”, Theory of singularities and its applications, Advances in Soviet Mathematics, 1, Amer. Math. Soc., Providence, RI, 1990, 211–246 | MR

[2] A. G. Aleksandrov, A. K. Tsikh, “Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière”, C. R. Acad. Sci. Paris Ser. I, 333:11 (2001), 832–837 | MR

[3] D. Barlet, “Faisceau $\omega_X^\bullet$, trace universelle et courants holomorphes sur un espace analytique réduit $X$ de dimension pure”, C. R. Acad. Sci. Paris Ser. A–B, 282:11 (1976), A579–A582 | MR

[4] D. Barlet, “Le faisceau $\omega_X^\bullet$ sur un espace analytique $X$ de dimension pure”, Lecture Notes in Mathematics, 670, Springer–Verlag, 1978, 187–204 | MR

[5] D. A. Buchsbaum, D. S. Rim, “A generalized Koszul complex. II. Depth and multiplicity”, Trans. Amer. Math. Soc., 111 (1964), 197–224 | DOI | MR | Zbl

[6] N. R. Coleff, M. E. Herrera, Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer–Verlag, Berlin–New York, 1978 | MR | Zbl

[7] P. Dolbeault, “Formes différentielles et cohomologie sur une variété analytique complexe. II”, Ann. of Math., 65:2 (1957), 282–330 | DOI | MR | Zbl

[8] P. Dolbeault, “Valeurs principales et opérateurs différentiels semi-holomorphes”, Fonctions analytiques de plusieurs variables et analyse complexe (Colloq. Internat. CNRS No. 208, 1972), Agora Mathematica, No. 1, Gauthier–Villars, Paris, 1974, 35–50 | MR

[9] A. El Haouzi, “Sur la torsion des courants $\overline\partial$-fermés sur un espace analytique complexe”, C. R. Acad. Sci. Paris Ser. I Math., 332:3 (2001), 205–208 | MR | Zbl

[10] H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, 265, Springer–Verlag, Berlin–New York, 1984 | MR | Zbl

[11] Ph. Griffiths, “Variations on a theorem of Abel”, Invent. Math., 35 (1976), 321–390 | DOI | MR | Zbl

[12] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley Sons], New York, 1978 | MR | Zbl

[13] G. Henkin, “Jean Leray and several complex variables”, Selected papers of Jean Leray. ØE uvres scientifiques. V. III: Several complex variables and holomorphic partial differential equations/Fonctions de plusieurs variables complexes et équations aux dérivées partielles holomorphes, With an introduction by Guennadi M. Henkin, ed. P. Malliavin, Springer–Verlag, Berlin; Société Mathématique de France, Paris, 1998 | MR

[14] G. Henkin, M. Passare, “Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths”, Invent. Math., 135:2 (1999), 297–328 | DOI | MR | Zbl

[15] M. Kersken, “Reguläre Differentialformen”, Manuscripta Math., 46:1 (1984), 1–25 | DOI | MR | Zbl

[16] E. Kunz, “Holomorphe Differentialformen auf algebraischen Varietäten mit Singularitäten. I”, Manuscripta Math., 15 (1975), 91–108 | DOI | MR | Zbl

[17] E. Kunz, “Residuen von Differentialformen auf Cohen–Macaulay Varitäten”, Math. Zeitschrift, 152 (1977), 165–189 | DOI | MR | Zbl

[18] J. Leray, “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III)”, Bull. Soc. Math. France, 87 (1959), 81–180 | MR | Zbl

[19] M. Passare, “Residues, currents, and their relation to ideals of holomorphic functions”, Math. Scand., 62:1 (1988), 75–152 | MR | Zbl

[20] C. Peters, J. H. M. Steenbrink, “Infinitesimal variations of Hodge structure and the generic Torelli problem for projective hypersurfaces (after Carlson, Donagi, Green, Griffiths, Harris)”, Classification of algebraic and analytic manifolds (Katata, 1982), Progress in Math., 39, Birkhäuser, Boston, MA, 1983, 399–463 | MR

[21] H. Poincaré, “Sur les résidus des integrales doubles”, Acta Math., 9 (1887), 321–380 | DOI | MR

[22] J.-B. Poly, “Sur un théorème de J. Leray en théorie des résidus”, C. R. Acad. Sci. Paris Ser. A–B, 274 (1972), A171–A174 | MR

[23] G. de Rham, “Sur la division de formes et de courants par une forme linéaire”, Comment. Math. Helv., 28 (1954), 346–352 | DOI | MR | Zbl

[24] K. Saito, “On a generalization of de-Rham lemma”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 165–170 | MR | Zbl

[25] K. Saito, “On the uniformization of complements of discriminant loci”, Hyperfunctions and Linear partial differential equations, RIMS Kōkyūroku, 287, 1977, 117–137

[26] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, ser. IA, 27:2 (1980), 265–291 | MR | Zbl

[27] V. M. Trutnev, A. K. Tsikh, “On the structure of residue currents and functionals that are orthogonal to ideals in the space of holomorphic functions”, Izv. Ross. Akad. Nauk Ser. Matem., 59:5 (1995), 203–224 | MR | Zbl

[28] A. K. Tsikh, “Weakly holomorphic functions on complete intersections, their holomorphic continuation”, Mat. Sb., 133(175):4 (1987), 429–445 | MR

[29] A. K. Tsikh, Multidimensional residues and their applications, Translations of Mathematical Monographs, 103, American Mathematical Society, Providence, RI, 1992 | MR | Zbl