On subspace convex-cyclic operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 473-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{H}$ be an infinite dimensional real or complex separable Hilbert space. We introduce a special type of a bounded linear operator $T$ and study its important relation with the invariant subspace problem on $\mathcal{H}$: the operator $T$ is said to be subspace convex-cyclic for a subspace $\mathcal{M}$ if there exists a vector whose orbit under $T$ intersects the subspace $\mathcal{M}$ in a relatively dense set. We give the sufficient condition for a subspace convex-cyclic transitive operator $T$ to be subspace convex-cyclic. We also give a special type of the Kitai criterion related to invariant subspaces which implies subspace convex-cyclicity. Finally we show a counterexample of a subspace convex-cyclic operator which is not subspace convex-cyclic transitive.
@article{JMAG_2020_16_a5,
     author = {Jaros{\l}aw Wo\'zniak and Dilan Ahmed and Mudhafar Hama and Karwan Jwamer},
     title = {On subspace convex-cyclic operators},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {473--489},
     publisher = {mathdoc},
     volume = {16},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a5/}
}
TY  - JOUR
AU  - Jarosław Woźniak
AU  - Dilan Ahmed
AU  - Mudhafar Hama
AU  - Karwan Jwamer
TI  - On subspace convex-cyclic operators
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 473
EP  - 489
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a5/
LA  - en
ID  - JMAG_2020_16_a5
ER  - 
%0 Journal Article
%A Jarosław Woźniak
%A Dilan Ahmed
%A Mudhafar Hama
%A Karwan Jwamer
%T On subspace convex-cyclic operators
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 473-489
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a5/
%G en
%F JMAG_2020_16_a5
Jarosław Woźniak; Dilan Ahmed; Mudhafar Hama; Karwan Jwamer. On subspace convex-cyclic operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 473-489. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a5/

[1] A. Albanese, D. Jornet, “A note on supercyclic operators in locally convex spaces”, Mediterr. J. Math., 16 (2019), 107 | DOI | MR | Zbl

[2] M. Amouchand, O. Benchiheb, “On cyclic sets of operators”, Rend. Circ. Mat. Palermo, II. Ser., 68 (2019), 521–529 | DOI | MR

[3] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, New York, 2009 | MR | Zbl

[4] T. Bermúdez, A. Bonilla, N. Feldman, “The convex-cyclic operator”, J. Math. Anal. Appl., 343 (2016), 1166–1181

[5] T. Bermúdez, A. Bonilla, V. Müller, A. Peris, “Ergodic and dynamical properties of $m$-isometries”, Linear Algebra Appl., 561 (2019), 98–112 | DOI | MR | Zbl

[6] P. Bourdon, N. Feldman, “Somewhere dense orbits are everywhere dense”, Indiana Univ. Math. J., 52 (2003), 811–819 | DOI | MR | Zbl

[7] N. Feldman, P. McGuire, “Convex-cyclic matrices, convex-polynomial interpolation and invariant convex sets”, Oper. Matrices, 11 (2017), 465–492 | DOI | MR | Zbl

[8] K. Grosse-Erdmann, A. Peris, Linear Chaos, Universitext, Springer, 2011 | DOI | MR | Zbl

[9] K. Hedayatian, L. Karimi, “Supercyclicity of Convex Operators”, Kyungpook Mat. J., 58 (2018), 81–90 | MR | Zbl

[10] C. Kitai, PhD thesis, University of Toronto, 1982 | MR

[11] C. Le, “On subspace-hypercyclic operators”, Proc. Amer. Math. Soc., 139 (2011), 2847–2852 | DOI | MR | Zbl

[12] B. Madore, R. Martínez-Avendaño, “Subspace hypercyclicity”, J. Math. Anal. Appl., 373 (2011), 502–511 | DOI | MR | Zbl

[13] H. Rezaei, “On the convex hull generated by orbit of operators”, Linear Algebra Appl., 438 (2013), 4190–4203 | DOI | MR | Zbl

[14] A.R. Sazegar, A. Assadi, “Density of convex-cyclic vectors”, Rend. Circ. Mat. Palermo, II. Ser., 68 (2019), 531–539 | DOI | MR | Zbl