Remarks on screen integrable null hypersurfaces in Lorentzian manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 460-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we show that the geometry of a screen integrable null hypersurface can be generated from an isometric immersion of a leaf of its screen distribution into the ambient space. We prove, under certain geometric conditions, that such immersions are contained in semi-Euclidean spheres or hyperbolic spaces, and the underlying null hypersurfaces are necessarily umbilic and screen totally umbilic. Where necessary, the examples are given to illustrate the main ideas.
@article{JMAG_2020_16_a4,
     author = {Samuel Ssekajja},
     title = {Remarks on screen integrable null hypersurfaces in {Lorentzian} manifolds},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {460--472},
     publisher = {mathdoc},
     volume = {16},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a4/}
}
TY  - JOUR
AU  - Samuel Ssekajja
TI  - Remarks on screen integrable null hypersurfaces in Lorentzian manifolds
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 460
EP  - 472
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a4/
LA  - en
ID  - JMAG_2020_16_a4
ER  - 
%0 Journal Article
%A Samuel Ssekajja
%T Remarks on screen integrable null hypersurfaces in Lorentzian manifolds
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 460-472
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a4/
%G en
%F JMAG_2020_16_a4
Samuel Ssekajja. Remarks on screen integrable null hypersurfaces in Lorentzian manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 460-472. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a4/

[1] C. Atindogbé, “Scalar curvature on lightlike hypersurfaces”, Applied Sciences, 11, Balkan Society of Geometers, Geometry Balkan Press, 2009, 9–18 | MR

[2] A.G. Colares, M.P. do Carmo, “On minimal immersions with parallel normal curvature tensor”, Springer Maths. Lect. Notes, 597, 104–113 | DOI | MR | Zbl

[3] G. de Rham, “Sur la réductibilité d'un espace de Riemann”, Comment. Math. Helv., 268 (1952), 328–344 | DOI | MR

[4] M. Hassirou, “Kaehler lightlike submanifolds”, Journal of Mathematical Sciences: Advances and Applications, 10:1/2 (2011), 1–21 | MR | Zbl

[5] K.L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1996 | MR | Zbl

[6] K.L. Duggal, D.H. Jin, “Half lightlike submanifolds of codimension 2”, Math. J. Toyama Univ., 22 (1999), 121–161 | MR | Zbl

[7] K.L. Duggal, D.H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007 | MR | Zbl

[8] K.L. Duggal, B. Sahin, “Screen conformal half-lightlike submanifolds”, Int. J. Math. Math. Sci., 68 (2004), 3737–3753 | DOI | MR | Zbl

[9] K.L. Duggal, B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010 | DOI | MR

[10] D.H. Jin, “Geometry of lightlike hypersurfaces of an indefinite sasakian manifold”, Indian J. Pure Appl. Math., 41:4 (2010), 569–581 | DOI | MR | Zbl

[11] D.H. Jin, “Ascreen lightlike hypersurfaces of an indefinite Sasakian manifold”, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 20:1 (2013), 25–35 | MR | Zbl

[12] M.A. Magid, “Isometric immersions of Lorentz space with parallel second fundamental forms”, Tsukuba J. Maths., 8:1 (1984), 31–54 | MR | Zbl

[13] B. O'Neill, Semi-Riemannian geometry, with applications to relativity, Academic Press, New York, 1983 | MR | Zbl

[14] M. Navarro, O. Palmas, D.A. Solis, “Null screen isoparametric hypersurfaces in Lorentzian space forms”, Mediterr. J. Math., 15 (2018), 215 | DOI | MR | Zbl

[15] D.N. Kupeli, Singular semi-Riemannian geometry, Mathematics and Its Applications, 366, Kluwer Academic Publishers, Dordrecht, 1996 | MR | Zbl

[16] K. Yano, B-Y. Chen, “Minimal submanifolds of a higher dimensional sphere”, Tensor. N.S., 22 (1971), 369–373 | MR | Zbl