The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 454-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of the existence of solutions to an inhomogeneous linear differential equation of higher even order. The problem arises while studying soliton and soliton-like solutions to partial differential equations of integrable type. The theorem on necessary and sufficient conditions of the existence of solutions to the differential equation in the Schwartz space of rapidly decreasing functions is proved by means of theory of pseudodifferential operators.
@article{JMAG_2020_16_a3,
     author = {Valerii Samoilenko and Yuliia Samoilenko},
     title = {The existence of solutions to an inhomogeneous higher order differential equation in the {Schwartz} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {454--459},
     publisher = {mathdoc},
     volume = {16},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/}
}
TY  - JOUR
AU  - Valerii Samoilenko
AU  - Yuliia Samoilenko
TI  - The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 454
EP  - 459
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/
LA  - en
ID  - JMAG_2020_16_a3
ER  - 
%0 Journal Article
%A Valerii Samoilenko
%A Yuliia Samoilenko
%T The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 454-459
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/
%G en
%F JMAG_2020_16_a3
Valerii Samoilenko; Yuliia Samoilenko. The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 454-459. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/

[1] V.A. Marchenko, The Sturm–Liouville Operators and Applications, Birkhauser, Basel, 1986 | MR | Zbl

[2] V.M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987 | MR | Zbl

[3] S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer, US, 1984 | MR

[4] G.L. Lamb, Jr., Elements of Soliton Theory, John Willey Sons, New York, 1980 | MR | Zbl

[5] V.P. Maslov, G.A. Omel'yanov, Geometric Asymptotics for PDE, v. I, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[6] Valerii Samoilenko, Yuliia Samoilenko, “Asymptotic soliton-like solutions to the singularly perturbed Benjamin-Bona-Mahony equation with variable coefficients”, J. Math. Physics, 60 (2019), 011501, 13 pp. | DOI | MR | Zbl

[7] V.H. Samoylenko, Yu.I. Samoylenko, “Asymptotic soliton-like solutions to the Korteweg–de Vries equation with variable coefficients”, Ukrainian Math. J., 57:1 (2005), 111–124 | MR

[8] G. Gorsky, A. Himonas, C. Hollimanc, G. Petronilho, “The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces”, J. Math. Anal. Appl., 405:2 (2013), 349–361 | DOI | MR | Zbl

[9] V.H. Samoylenko, Yu.I. Samoylenko, “Existence of a solution to the inhomogeneous equation with the one-dimensional Schrodinger operator in the space of quickly decreasing functions”, J. Math. Sciences, 187 (2012), 70–76 | DOI | MR | Zbl

[10] L. Hörmander, The Analysis of Linear Partial Differential Operators: Pseudodifferential Operators, Springer, Berlin, 1985

[11] V.V. Grushin, “Pseudodifferential operators in ${\mathbf R}^n$ with bounded symbols”, Funct. Anal. Its Appl., 4 (1970), 202–212 | DOI | MR | Zbl

[12] V.V. Grushin, “On a class of elliptic pseudodifferential operators degenerating on a submanifold”, Mathematical USSR-Sbornik, 13 (1971), 155–185 | DOI | MR | Zbl