Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2020_16_a3, author = {Valerii Samoilenko and Yuliia Samoilenko}, title = {The existence of solutions to an inhomogeneous higher order differential equation in the {Schwartz} space}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {454--459}, publisher = {mathdoc}, volume = {16}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/} }
TY - JOUR AU - Valerii Samoilenko AU - Yuliia Samoilenko TI - The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2020 SP - 454 EP - 459 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/ LA - en ID - JMAG_2020_16_a3 ER -
%0 Journal Article %A Valerii Samoilenko %A Yuliia Samoilenko %T The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2020 %P 454-459 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/ %G en %F JMAG_2020_16_a3
Valerii Samoilenko; Yuliia Samoilenko. The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 454-459. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a3/
[1] V.A. Marchenko, The Sturm–Liouville Operators and Applications, Birkhauser, Basel, 1986 | MR | Zbl
[2] V.M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987 | MR | Zbl
[3] S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer, US, 1984 | MR
[4] G.L. Lamb, Jr., Elements of Soliton Theory, John Willey Sons, New York, 1980 | MR | Zbl
[5] V.P. Maslov, G.A. Omel'yanov, Geometric Asymptotics for PDE, v. I, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[6] Valerii Samoilenko, Yuliia Samoilenko, “Asymptotic soliton-like solutions to the singularly perturbed Benjamin-Bona-Mahony equation with variable coefficients”, J. Math. Physics, 60 (2019), 011501, 13 pp. | DOI | MR | Zbl
[7] V.H. Samoylenko, Yu.I. Samoylenko, “Asymptotic soliton-like solutions to the Korteweg–de Vries equation with variable coefficients”, Ukrainian Math. J., 57:1 (2005), 111–124 | MR
[8] G. Gorsky, A. Himonas, C. Hollimanc, G. Petronilho, “The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces”, J. Math. Anal. Appl., 405:2 (2013), 349–361 | DOI | MR | Zbl
[9] V.H. Samoylenko, Yu.I. Samoylenko, “Existence of a solution to the inhomogeneous equation with the one-dimensional Schrodinger operator in the space of quickly decreasing functions”, J. Math. Sciences, 187 (2012), 70–76 | DOI | MR | Zbl
[10] L. Hörmander, The Analysis of Linear Partial Differential Operators: Pseudodifferential Operators, Springer, Berlin, 1985
[11] V.V. Grushin, “Pseudodifferential operators in ${\mathbf R}^n$ with bounded symbols”, Funct. Anal. Its Appl., 4 (1970), 202–212 | DOI | MR | Zbl
[12] V.V. Grushin, “On a class of elliptic pseudodifferential operators degenerating on a submanifold”, Mathematical USSR-Sbornik, 13 (1971), 155–185 | DOI | MR | Zbl