Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2020_16_a2, author = {Yan Rybalko and Dmitry Shepelsky}, title = {Defocusing nonlocal nonlinear {Schr\"odinger} equation with step-like boundary conditions: long-time behavior for shifted initial data}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {418--453}, publisher = {mathdoc}, volume = {16}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/} }
TY - JOUR AU - Yan Rybalko AU - Dmitry Shepelsky TI - Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2020 SP - 418 EP - 453 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/ LA - en ID - JMAG_2020_16_a2 ER -
%0 Journal Article %A Yan Rybalko %A Dmitry Shepelsky %T Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2020 %P 418-453 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/ %G en %F JMAG_2020_16_a2
Yan Rybalko; Dmitry Shepelsky. Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 418-453. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/
[1] M.J. Ablowitz, B.-F. Feng, X.-D. Luo, Z.H. Musslimani, “General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions”, Nonlinearity, 31 (2018), 5385 | DOI | MR | Zbl
[2] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, “The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems”, Stud. Appl. Math., 53 (1974), 249–315 | DOI | MR | Zbl
[3] M.J. Ablowitz, X.-D. Luo, J. Cole, “Solitons, the Korteweg–de Vries equation with step boundary values, and pseudo-embedded eigenvalues”, J. Math. Phys., 59 (2018), 091406 | DOI | MR | Zbl
[4] M.J. Ablowitz, Z.H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110 (2013), 064105 | DOI
[5] M.J. Ablowitz, Z.H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29 (2016), 915–946 | DOI | MR | Zbl
[6] K. Andreiev, I. Egorova, “On the long-time asymptotics for the Korteweg-de Vries equation with steplike initial data associated with rarefaction waves”, Zh. Mat. Fiz. Anal. Geom., 13 (2017), 325–343 | DOI | MR | Zbl
[7] K. Andreiev, I. Egorova, T.L. Lange, G. Teschl, “Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent”, J. Differential Equations, 261 (2016), 5371–5410 | DOI | MR | Zbl
[8] C.M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having P-T symmetry”, Phys. Rev. Lett., 80 (1998), 5243 | DOI | MR | Zbl
[9] G. Biondini, “Riemann problems and dispersive shocks in self-focusing media”, Phys. Rev. E, 98 (2018), 052220, 7 pp. | DOI
[10] G. Biondini, E. Fagerstrom, B. Prinari, “Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions”, Phys. D: Nonlinear Phenomena, 333 (2016), 117–136 | DOI | MR | Zbl
[11] G. Biondini, B. Prinari, “On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation”, Stud. Appl. Math., 132:2 (2014), 138–159 | DOI | MR | Zbl
[12] Yu. Bludov, V. Konotop, B. Malomed, “Stable dark solitons in PT-symmetric dual-core waveguides”, Phys. Rev. A, 87 (2013), 013816 | DOI
[13] A. Boutet de Monvel, V.P. Kotlyarov, D. Shepelsky, “Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data”, Int. Math. Res. Not., 7 (2011), 1613–1653 | MR | Zbl
[14] D.C. Brody, “PT-symmetry, indefinite metric, and nonlinear quantum mechanics”, J. Phys. A: Math. Theor., 50 (2017), 485202 | DOI | MR | Zbl
[15] R. Buckingham, S. Venakides, “Long-time asymptotics of the nonlinear Schrödinger equation shock problem”, Comm. Pure Appl. Math., 60 (2007), 1349–1414 | DOI | MR | Zbl
[16] K. Chen, D.J. Zhang, “Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction”, Appl. Math. Lett., 75 (2018), 82–88 | DOI | MR | Zbl
[17] P.A. Deift, A.R. Its, X. Zhou, “Long-time asymptotics for integrable nonlinear wave equations”, Important developments in Soliton Theory 1980–1990, eds. A.S. Fokas, V.E. Zakharov, Springer, New York, 1993, 181–204 | DOI | MR | Zbl
[18] P. Deift, S. Kamvissis, T. Kriecherbauer, X. Zhou, “The Toda rarefaction problem”, Comm. Pure Appl. Math., XLIX (1996), 35–83 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[19] P.A. Deift, S. Venakides, X. Zhou, “The collisionless shock region for the long-time behavior of solutions of the KdV equation”, Comm. Pure Appl. Math., 47:2 (1994), 199–206 | DOI | MR | Zbl
[20] P.A. Deift, S. Venakides, X. Zhou, “New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems”, Int. Math. Res. Not., 6 (1997), 286–299 | DOI | MR
[21] P.A. Deift, X. Zhou, “A steepest descend method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR | Zbl
[22] I. Egorova, J. Michor, G. Teschl, “Long-time asymptotics for the Toda shock problem: non-overlapping spectra”, Zh. Mat. Fiz. Anal. Geom., 14 (2018), 406–451 | DOI | MR | Zbl
[23] G.A. El, M.A. Hoefer, “Dispersive shock waves and modulation theory”, Phys. D: Nonlinear Phenomena, 333 (2016), 11–65 | DOI | MR | Zbl
[24] L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | MR | Zbl
[25] A.S. Fokas, A.R. Its, A.A. Kapaev, V. Yu. Novokshenov, Painleve Transcendents. The Riemann–Hilbert Approach, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[26] T. Gadzhimuradov, A. Agalarov, “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation”, Phys. Rev. A, 93 (2016), 062124 | DOI
[27] V.S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58 (2017), 013502 | DOI | MR | Zbl
[28] A.V. Gurevich, L.P. Pitaevskii, “Nonstationary structure of a collisionless shock wave”, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 65 (1973), 590–604
[29] M. Gürses, A. Pekcan, “Nonlocal nonlinear Schrödinger equations and their soliton solutions”, J. Math. Phys., 59 (2018), 051501 | DOI | MR | Zbl
[30] R. Jenkins, “Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation”, Nonlinearity, 28 (2015), 2131–2180 | DOI | MR | Zbl
[31] E. Ya. Hruslov, “Asymptotics of the solution of the cauchy problem for the Korteweg-de Vries equation with initial data of step type”, Math. USSR-Sb., 28 (1976), 229–248 | DOI | MR
[32] A.R. Its, “Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations”, Doklady Akad. Nauk SSSR, 261:1 (1981), 14–18 | MR | Zbl
[33] V.V. Konotop, J. Yang, D.A. Zezyulin, “Nonlinear waves in PT-symmetric systems”, Rev. Mod. Phys., 88 (2016), 035002 | DOI
[34] V.P. Kotlyarov, E. Ya. Khruslov, “Solitons of the nonlinear Schrödinger equation, which are generated by the continuous spectrum”, Teoreticheskaya i Matematicheskaya Fizika, 68:2 (1986), 172–186 | MR
[35] V.P. Kotlyarov, A.M. Minakov, “Riemann–Hilbert problem to the modified Korteveg–de Vries equation: Long-time dynamics of the step-like initial data”, J. Math. Phys., 51 (2010), 093506 | DOI | MR | Zbl
[36] V.P. Kotlyarov, A. Minakov, “Dispersive shock wave, generalized Laguerre polynomials, and asymptotic solitons of the focusing nonlinear Schrödinger equation”, J. Math. Phys., 60 (2019), 123501 | DOI | MR | Zbl
[37] J. Lenells, “The nonlinear steepest descent method for Riemann–Hilbert problems of low regularity”, Indiana Univ. Math., 66 (2017), 1287–1332 | DOI | MR | Zbl
[38] S.Y. Lou, “Alice–Bob systems, $\hat{P}-\hat{T}-\hat{C}$ symmetry invariant and symmetry breaking soliton solutions”, J. Math. Phys., 59 (2018), 083507 | DOI | MR | Zbl
[39] S. Lou, F. Huang, “Alice-Bob Physics: Coherent Solutions of Nonlocal KdV Systems”, Scientific Reports, 7 (2017), 869 | DOI | MR
[40] K.T.-R. McLaughlin, P.D. Miller, “The $\bar{\partial}$ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights”, Int. Math. Res. Pap. Art., 177 (2006), 48673 | MR
[41] J. Michor, A. L. Sakhnovich, “GBDT and algebro-geometric approaches to explicit solutions and wave functions for nonlocal NLS”, J. Phys. A: Math. Theor., 52 (2018), 025201 | DOI | MR
[42] A. Minakov, “Asymptotics of step-like solutions for the Camassa-Holm equation”, J. Differential Equations, 261:11 (2016) | DOI | MR | Zbl
[43] M. Onorato, A.R. Osborne, M. Serio, “Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves”, Phys. Rev. Lett., 96 (2006), 014503 | DOI
[44] Ya. Rybalko, D. Shepelsky, “Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 60 (2019), 031504 | DOI | MR | Zbl
[45] Ya. Rybalko, D. Shepelsky, “Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation with step-like initial data”, J. Differential Equations, 270 (2021), 694–724 | DOI | MR | Zbl
[46] Ya. Rybalko, D. Shepelsky, “Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-like initial data”, Comm. Math. Phys. (to appear) , arXiv: 1908.06415 | MR
[47] Ya. Rybalko, D. Shepelsky, Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation, arXiv: 2004.05987 | MR
[48] S. Venakides, P. Deift, R. Oba, “The Toda shock problem”, Comm. Pure Appl. Math., 44 (1991), 1171–1242 | DOI | MR | Zbl
[49] A. Sarma, M. Miri, Z. Musslimani, D. Christodoulides, “Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities”, Phys. Rev. E, 89 (2014) | DOI
[50] J. Yang, “General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR
[51] B. Yang, J. Yang, “General rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation”, Lett. Math. Phys., 109 (2019), 945–973 | DOI | MR | Zbl
[52] V.E. Zakharov, L.A. Ostrovsky, “Modulation instability: The beginning”, Phys. D, 238 (2009), 540–548 | DOI | MR | Zbl
[53] Y. Zhang, D. Qiu, Y. Cheng, J. He, “Rational Solution of the Nonlocal Nonlinear Schroedinger Equation and Its Application in Optics”, Romanian Journal of Physics, 62 (2017), 108
[54] M. Znojil, D.I. Borisov, “Two patterns of PT-symmetry break- down in a non-numerical six-state simulation”, Ann. Phys., NY, 394 (2018), 40–49 | DOI | MR | Zbl