Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 418-453

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with the long-time asymptotic analysis of the initial value problem for the integrable defocusing nonlocal nonlinear Schrödinger equation $ iq_{t}(x,t)+q_{xx}(x,t)-2 q^{2}(x,t)\bar{q}(-x,t)=0 $ with a step-like initial data: $q(x,0)\to 0$ as $x\to -\infty$ and $q(x,0)\to A$ as $x\to +\infty$. Since the equation is not translation invariant, the solution of this problem is sensitive to shifts of the initial data. We consider a family of problems, parametrized by $R>0$, with the initial data that can be viewed as perturbations of the “shifted step function” $q_{R,A}(x)$: $q_{R,A}(x)=0$ for $x$ and $q_{R,A}(x)=A$ for $x>R$, where $A>0$ and $R>0$ are arbitrary constants. We show that the asymptotics is qualitatively different in sectors of the $(x,t)$ plane, the number of which depends on the relationship between $A$ and $R$: for a fixed $A$, the bigger $R$, the larger number of sectors.
@article{JMAG_2020_16_a2,
     author = {Yan Rybalko and Dmitry Shepelsky},
     title = {Defocusing nonlocal nonlinear {Schr\"odinger} equation with step-like boundary conditions: long-time behavior for shifted initial data},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {418--453},
     publisher = {mathdoc},
     volume = {16},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/}
}
TY  - JOUR
AU  - Yan Rybalko
AU  - Dmitry Shepelsky
TI  - Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 418
EP  - 453
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/
LA  - en
ID  - JMAG_2020_16_a2
ER  - 
%0 Journal Article
%A Yan Rybalko
%A Dmitry Shepelsky
%T Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 418-453
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/
%G en
%F JMAG_2020_16_a2
Yan Rybalko; Dmitry Shepelsky. Defocusing nonlocal nonlinear Schr\"odinger equation with step-like boundary conditions: long-time behavior for shifted initial data. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 418-453. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a2/