Ricci solitons and certain related metrics on almost co-Kaehler manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 402-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study a Ricci soliton and a generalized $m$-quasi-Einstein metric on almost co-Kaehler manifold $M$ satisfying a nullity condition. First, we consider a non-co-Kaehler $(\kappa, \mu)$-almost co-Kaehler metric as a Ricci soliton and prove that the soliton is expanding with $\lambda=-2n\kappa$ and the soliton vector field $X$ leaves the structure tensors $\eta,\xi$ and $\varphi$ invariant. This result extends Theorem 5.1 of [32]. We construct an example to show the existence of a Ricci soliton on $M$. Finally, we prove that if $M$ is a generalized $(\kappa, \mu)$-almost co-Kaehler manifold of dimension higher than 3 such that $h\neq 0$, then the metric of $M$ can not be a generalized $m$-quasi-Einstein metric, and this recovers the recent result of Wang [37, Theorem 4.1] as a special case.
@article{JMAG_2020_16_a1,
     author = {Devaraja Mallesha Naik and V. Venkatesha and H. Aruna Kumara},
     title = {Ricci solitons and certain related metrics on almost {co-Kaehler} manifolds},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {402--417},
     publisher = {mathdoc},
     volume = {16},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a1/}
}
TY  - JOUR
AU  - Devaraja Mallesha Naik
AU  - V. Venkatesha
AU  - H. Aruna Kumara
TI  - Ricci solitons and certain related metrics on almost co-Kaehler manifolds
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 402
EP  - 417
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a1/
LA  - en
ID  - JMAG_2020_16_a1
ER  - 
%0 Journal Article
%A Devaraja Mallesha Naik
%A V. Venkatesha
%A H. Aruna Kumara
%T Ricci solitons and certain related metrics on almost co-Kaehler manifolds
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 402-417
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a1/
%G en
%F JMAG_2020_16_a1
Devaraja Mallesha Naik; V. Venkatesha; H. Aruna Kumara. Ricci solitons and certain related metrics on almost co-Kaehler manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 402-417. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a1/

[1] A. Barros, E. Jr. Ribeiro, “Characterizations and integral formulae for generalized $m$-quasi-Einstein metrics”, Bull. Brazilian Math. Soc., 45 (2014), 324–341 | DOI | MR

[2] C.L. Bejan, M. Crasmareanu, “Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry”, Ann. Global Anal. Geom., 46 (2014), 117–127 | DOI | MR | Zbl

[3] D.E. Blair, “The theory of quasi-Sasakian structures”, J. Differ. Geom., 1 (1967), 331–345 | MR | Zbl

[4] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, 2010 | DOI | MR | Zbl

[5] C. Calin, M. Crasmareanu, “From the Eisenhart problem to Ricci solitons in $f$-Kenmotsu manifolds”, Bull. Malays. Mat. Sci. Soc., 33 (2010), 361–368 | MR | Zbl

[6] B. Cappelletti-Montano, A.D. Nicola, I. Yudin, “A survey on cosymplectic geometry”, Rev. Math. Phys., 25 (2013), 1343002 | DOI | MR | Zbl

[7] J. Case, Y. Shu, G. Wei, “Rigidity of quasi-Einstein metrics”, Differential Geom. Appl., 29 (2011), 93–100 | DOI | MR | Zbl

[8] G. Catino, “Generalized quasi-Einstein manifolds with harmonic Weyl tensor”, Math. Z., 271 (2012), 751–756 | DOI | MR | Zbl

[9] G. Catino, L. Mazzieri, Gradient Einstein-solitons, arXiv: 1201.6620 | MR

[10] X. Chen, “Ricci solitons in almost $f$-cosymplectic manifolds”, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 305–319 | MR | Zbl

[11] J. T. Cho, “Almost contact 3-manifolds and Ricci solitons”, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1220022 | DOI | MR | Zbl

[12] M. Crasmareanu, “Parallel tensors and Ricci solitons in $N(\kappa)$-quasi Einstein manifolds”, Indian J. Pure Appl. Math., 43 (2012), 359–369 | DOI | MR | Zbl

[13] P. Dacko, “On almost cosymplectic manifolds with the structure vector field $\xi$-belonging to the $\kappa$-nullity distribution”, Balkan J. Geom. Appl., 5 (2000), 47–60 | MR | Zbl

[14] K.L. Duggal, R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Kluwer, Dordrecht, 1999 | MR | Zbl

[15] H. Endo, “Non-existence of almost cosymplectic manifolds satisfying a certain condition”, Tensor (N.S.), 63 (2002), 272–284 | MR

[16] A. Ghosh, “Kenmotsu 3-metric as a Ricci soliton”, Chaos Solitons Fractals, 44 (2011), 647–650 | DOI | MR | Zbl

[17] A. Ghosh, “An $\eta$-Einstein Kenmotsu metric as a Ricci soliton”, Publ. Math. Debrecen, 82 (2013), 591–598 | DOI | MR | Zbl

[18] A. Ghosh, “$(m,\rho)$-quasi Einstein metrics in the frame work of $K$-contact manifold”, Math. Phys. Anal. Geom., 17 (2014), 369–376 | DOI | MR | Zbl

[19] A. Ghosh, “Generalized $m$-quasi-Einstein metric within the framework of Sasakian and $K$-contact manifolds”, Ann. Polon. Math., 115 (2015), 33–41 | DOI | MR | Zbl

[20] A. Ghosh, R. Sharma, “Some results on contact metric manifolds”, Ann. Global Anal. Geom., 15 (1997), 497–507 | DOI | MR | Zbl

[21] S.I. Goldberg, K. Yano, “Integrability of almost cosymplectic structures”, Pacific J. Math., 31 (1969), 373–382 | DOI | MR | Zbl

[22] R.S. Hamilton, “The Ricci flow on surfaces”, Contemp. Math., 71, 1988, 237–261 | DOI | MR

[23] C. He, P. Petersen, W. Wylie, “On the classification of warped product Einstein metrics”, Comm. Anal. Geom., 20 (2012), 271–311 | DOI | MR | Zbl

[24] G. Huang, Y. Wei, “The classification of $(m,\rho)$-quasi-Einstein manifolds”, Ann. Global Anal. Geom., 44 (2013), 269–282 | DOI | MR | Zbl

[25] H. Li, “Topology of co-symplectic/co-Kähler manifolds”, Asian J. Math., 12 (2008), 527–544 | DOI | MR | Zbl

[26] D.M. Naik, V. Venkatesha, “$\eta$-Ricci solitons and almost $\eta$-Ricci solitons on para-Sasakian manifolds”, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950134 | DOI | MR

[27] D.M. Naik, V. Venkatesha, D.G. Prakasha, “Certain results on Kenmotsu pseudo-metric manifolds”, Miskolc Math. Notes, 20 (2019), 1083–1099 | DOI | MR | Zbl

[28] Z. Olszak, “On almost cosymplectic manifolds”, Kodai Math. J., 4 (1981), 239–250 | DOI | MR | Zbl

[29] H. Oztürk, N. Aktan, C. Murathan, Almost $\alpha$-cosymplectic $(\kappa,\mu,\nu)$-spaces, arXiv: 1007.0527v1

[30] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math/0211159v1

[31] R. Sharma, “Certain results on $K$-contact and $(\kappa, \mu)$-contact manifolds”, J. Geom., 89 (2008), 138–147 | DOI | MR | Zbl

[32] Y. J. Suh, U. C. De, “Yamabe solitons and Ricci solitons on almost co-Kähler manifolds”, Canad. Math. Bull., 2019 | MR

[33] S. Tanno, “The automorphism group of almost contact Riemannian manifolds”, Tohoku Math. J., 21 (1969), 21–38 | MR | Zbl

[34] M. Turan, U. C. De, A. Yildiz, “Ricci solitons and gradient Ricci solitons in three dimensional trans-Sasakian manifolds”, Filomat, 26 (2012), 363–370 | DOI | MR | Zbl

[35] V. Venkatesha, D.M. Naik, H. A. Kumara, “$*$-Ricci solitons and gradient almost $*$-Ricci solitons on Kenmotsu manifolds”, Math. Slovaca, 69 (2019), 1–12 | DOI | MR

[36] V. Venkatesha, H. A. Kumara, D. M. Naik, “Almost $*$-Ricci Soliton on ParaKenmotsu Manifolds”, Arab. J. Math., 2019 | MR

[37] Y. Wang, “A generalization of the Goldberg conjecture for coKähler manifolds”, Mediterr. J. Math., 13 (2016), 2679–2690 | DOI | MR | Zbl

[38] Y. Wang, “Ricci solitons on 3-dimensional cosymplectic manifolds”, Math. Slovaca, 67 (2017), 979–984 | MR | Zbl

[39] Y. Wang, “Ricci solitons on almost co-Kähler manifolds”, Canad. Math. Bull., 62 (2019), 912–922 | DOI | MR | Zbl

[40] Y. Wang, X. Liu, “Ricci solitons on three dimensional $\eta$-Einstein almost Kenmotsu manifolds”, Taiwanese. J. Math., 19 (2015), 91–100 | MR | Zbl

[41] K. Yano, Integral Formulas in Riemannian Ggeometry, Marcel Dekker, New York, 1970 | MR