Dissipative extensions of linear relations generated by integral equations with operator measures
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 381-401

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a minimal relation $L_0$ generated by an integral equation with operator measures is defined and a description of the adjoint relation $L_0^*$ is given. For this minimal relation, we construct a space of boundary values (a boundary triplet) satisfying the abstract “Green formula” and get a description of maximal dissipative (accumulative) and also self-adjoint extensions of the minimal relation.
@article{JMAG_2020_16_a0,
     author = {Vladislav M. Bruk},
     title = {Dissipative extensions of linear relations generated by integral equations with operator measures},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {381--401},
     publisher = {mathdoc},
     volume = {16},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/}
}
TY  - JOUR
AU  - Vladislav M. Bruk
TI  - Dissipative extensions of linear relations generated by integral equations with operator measures
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 381
EP  - 401
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/
LA  - en
ID  - JMAG_2020_16_a0
ER  - 
%0 Journal Article
%A Vladislav M. Bruk
%T Dissipative extensions of linear relations generated by integral equations with operator measures
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 381-401
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/
%G en
%F JMAG_2020_16_a0
Vladislav M. Bruk. Dissipative extensions of linear relations generated by integral equations with operator measures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 381-401. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/