Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2020_16_a0, author = {Vladislav M. Bruk}, title = {Dissipative extensions of linear relations generated by integral equations with operator measures}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {381--401}, publisher = {mathdoc}, volume = {16}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/} }
TY - JOUR AU - Vladislav M. Bruk TI - Dissipative extensions of linear relations generated by integral equations with operator measures JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2020 SP - 381 EP - 401 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/ LA - en ID - JMAG_2020_16_a0 ER -
%0 Journal Article %A Vladislav M. Bruk %T Dissipative extensions of linear relations generated by integral equations with operator measures %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2020 %P 381-401 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/ %G en %F JMAG_2020_16_a0
Vladislav M. Bruk. Dissipative extensions of linear relations generated by integral equations with operator measures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020), pp. 381-401. http://geodesic.mathdoc.fr/item/JMAG_2020_16_a0/
[1] Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[2] Amer. Math. Soc., Providence, RI | MR | Zbl
[3] J. Behrndt, S. Hassi, H. Snoo, R. Wietsma, “Square-integrable solutions and Weil functions for singular canonical systems”, Math. Nachr., 284:11–12 (2011), 1334–1384 | DOI | MR | Zbl
[4] Math. USSR-Sbornik, 29:2 (1976), 186–192 | DOI | MR | Zbl
[5] Mathematical Notes, 22:6 (1977), 953–958 | DOI | MR | Zbl
[6] V.M. Bruk, “On a number of linearly independent square-integrable solutions of systems of differential equations”, Functional Analysis, 5, Uljanovsk, 1975, 25–33 | MR
[7] Mathematical Notes, 24:4 (1978), 767–773 | DOI | MR | Zbl
[8] V.M. Bruk, “Boundary value problems for integral equations with operator measures”, Probl. Anal. Issues Anal., 6(24):1 (2017), 19–40 | DOI | MR | Zbl
[9] V.M. Bruk, “On self-adjoint extensions of operators generated by integral equations”, Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 1(34), 17–31
[10] V.M. Bruk, “On the characteristic operator of an integral equation with a Nevanlinna measure in the infinite-dimensional case”, Zh. Mat. Fiz. Anal. Geom., 10:2 (2014), 163–188 | DOI | MR | Zbl
[11] V.M. Bruk, “Generalized Resolvents of operators generated by integral equations”, Probl. Anal. Issues Anal., 7(25):2 (2018), 20–38 | DOI | MR | Zbl
[12] V.M. Bruk, “On self-adjoint extensions of relations generated by integral equations”, Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 1(42), 43–61
[13] Kluwer Acad. Publ., Dordrecht–Boston–London | MR | Zbl
[14] Soviet Math. Dokl., 13:1 (1972), 1063–1067 | MR | Zbl
[15] V. Khrabustovskyi, “Analogs of generalized resolvents for relations generated by a pair of differential operator expressions one of which depends on spectral parameter in nonlinear manner”, Zh. Mat. Fiz. Anal. Geom., 9:4 (2013), 496–535 | MR | Zbl
[16] Mathematical Notes, 17:1 (1975), 25–28 | DOI | MR
[17] M.G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications”, Mat. Sbornik, 20:3 (1947), 431–495 | MR | Zbl
[18] George G. Harrar and Company, LTD, London–Toronto–Wellington–Sidney | MR | Zbl
[19] B.C. Orcutt, Canonical Differential Equations, Ph. D. Thesis, University of Virginia, 1969 | MR
[20] Soviet Math. Dokl., 10:1 (1969), 188–192 | MR | Zbl
[21] F.S. Rofe-Beketov, A.M Kholkin, Spectral Analysis of Differential Operators, World Scientific Monograph Series in Mathematics, 7, Singapure, 2005 | DOI | MR | Zbl