Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2019_15_a4, author = {Maryam Jamreh and Mehdi Nadjafikhah}, title = {Some non-trivial and non-gradient closed {pseudo-Riemannian} steady {Ricci} solitons}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {526--542}, publisher = {mathdoc}, volume = {15}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/} }
TY - JOUR AU - Maryam Jamreh AU - Mehdi Nadjafikhah TI - Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 526 EP - 542 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/ LA - en ID - JMAG_2019_15_a4 ER -
%0 Journal Article %A Maryam Jamreh %A Mehdi Nadjafikhah %T Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2019 %P 526-542 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/ %G en %F JMAG_2019_15_a4
Maryam Jamreh; Mehdi Nadjafikhah. Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 526-542. http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/
[1] M.M. Akbar, E. Woolgar, “Ricci solitons and Einstein-scalar field theory”, Classical Quantum Gravity, 26:5 (2009), 055015 | DOI | MR | Zbl
[2] C. Boubel, P. Mounoud, “Affine transformations and parallel lightlike vector fields on compact Lorentzian $3$-manifolds”, Trans. Amer. Math. Soc., 368 (2016), 2223–2262 | DOI | MR | Zbl
[3] E. Calviño-Louzao, E. García-Río, P. Gilkey, J.H. Park, R. Vázquez-Lorenzo, Aspects of Differential Geometry, v. III, Synthesis Lectures on Mathematics and Statistics, Morgan and Claypool Publishers, 2017 | MR | Zbl
[4] H.D. Cao, “Recent progress on Ricci solitons”, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1–38 | MR | Zbl
[5] S.F. Ellermeyer, D. G. Robinson, “Integrals of periodic functions”, Math. Mag., 74 (2001), 393–396 | DOI | MR | Zbl
[6] M. Eminenti, G. La Nave, C. Mantegazza, “Ricci solitons: the equation point of view”, Manuscr. Math., 127 (2008), 345–367 | DOI | MR | Zbl
[7] S. Gavino-Fernández, The geometry of Lorentzian Ricci solitons, Ph.D. thesis, Universidade de Santiago de Compostela, 2012 http://www.tesisenred.net/handle/10803/84770
[8] R.S. Hamilton, “The Ricci flow on surfaces”, Contemp. Math., 71, 1988, 237–262 | DOI | MR | Zbl
[9] R.S. Hamilton, “Three manifolds with positive Ricci curvature”, J. Differ. Geom., 17 (1982), 255–306 | DOI | MR | Zbl
[10] M. Jamreh, M. Nadjafikhah, “Closed pseudo-Riemannian Ricci solitons”, J. Math. Phys., 58:10 (2017), 101505 | DOI | MR | Zbl
[11] T. Leistner, D. Schliebner, “Completeness of compact Lorentzian manifolds with special holonomy”, Math. Ann., 364 (2016), 1469–1503 | DOI | MR | Zbl
[12] J. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture, Clay Mathematics Monographs, 3, Amer. Math. Soc., Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007 | MR
[13] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983 | MR | Zbl
[14] M. Sánchez, “An Introduction to the Completeness of Compact Semi-Riemannian Manifolds”, Sémin. Théor. Spectr. Géom., 13, Univ. Grenoble I, Saint-Martin-d'Hères, 1995, 37–53 | MR | Zbl