Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 526-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Ricci soliton equation on compact indecomposable Lorentzian $3$-manifolds that admit a parallel light-like vector field with closed orbits. These compact structures that are geodesically complete, admit non-trivial, i.e., non-Einstein and non-gradient steady Lorentzian Ricci solitons with zero scalar curvature which show the difference between closed Riemannian and pseudo-Riemannian Ricci solitons. The associated potential vector field of a Ricci soliton structure in all the cases that we construct on these manifolds is a space-like vector field. However, we show that there are examples of closed pseudo-Riemannian steady Ricci solitons in the neutral signature $(2,2)$ with zero scalar curvature such that the associated potential vector field can be time-like or null. These compact manifolds are also geodesically complete and they cannot admit a conformal-Killing vector field.
@article{JMAG_2019_15_a4,
     author = {Maryam Jamreh and Mehdi Nadjafikhah},
     title = {Some non-trivial and non-gradient closed {pseudo-Riemannian} steady {Ricci} solitons},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {526--542},
     publisher = {mathdoc},
     volume = {15},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/}
}
TY  - JOUR
AU  - Maryam Jamreh
AU  - Mehdi Nadjafikhah
TI  - Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 526
EP  - 542
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/
LA  - en
ID  - JMAG_2019_15_a4
ER  - 
%0 Journal Article
%A Maryam Jamreh
%A Mehdi Nadjafikhah
%T Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 526-542
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/
%G en
%F JMAG_2019_15_a4
Maryam Jamreh; Mehdi Nadjafikhah. Some non-trivial and non-gradient closed pseudo-Riemannian steady Ricci solitons. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 526-542. http://geodesic.mathdoc.fr/item/JMAG_2019_15_a4/

[1] M.M. Akbar, E. Woolgar, “Ricci solitons and Einstein-scalar field theory”, Classical Quantum Gravity, 26:5 (2009), 055015 | DOI | MR | Zbl

[2] C. Boubel, P. Mounoud, “Affine transformations and parallel lightlike vector fields on compact Lorentzian $3$-manifolds”, Trans. Amer. Math. Soc., 368 (2016), 2223–2262 | DOI | MR | Zbl

[3] E. Calviño-Louzao, E. García-Río, P. Gilkey, J.H. Park, R. Vázquez-Lorenzo, Aspects of Differential Geometry, v. III, Synthesis Lectures on Mathematics and Statistics, Morgan and Claypool Publishers, 2017 | MR | Zbl

[4] H.D. Cao, “Recent progress on Ricci solitons”, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1–38 | MR | Zbl

[5] S.F. Ellermeyer, D. G. Robinson, “Integrals of periodic functions”, Math. Mag., 74 (2001), 393–396 | DOI | MR | Zbl

[6] M. Eminenti, G. La Nave, C. Mantegazza, “Ricci solitons: the equation point of view”, Manuscr. Math., 127 (2008), 345–367 | DOI | MR | Zbl

[7] S. Gavino-Fernández, The geometry of Lorentzian Ricci solitons, Ph.D. thesis, Universidade de Santiago de Compostela, 2012 http://www.tesisenred.net/handle/10803/84770

[8] R.S. Hamilton, “The Ricci flow on surfaces”, Contemp. Math., 71, 1988, 237–262 | DOI | MR | Zbl

[9] R.S. Hamilton, “Three manifolds with positive Ricci curvature”, J. Differ. Geom., 17 (1982), 255–306 | DOI | MR | Zbl

[10] M. Jamreh, M. Nadjafikhah, “Closed pseudo-Riemannian Ricci solitons”, J. Math. Phys., 58:10 (2017), 101505 | DOI | MR | Zbl

[11] T. Leistner, D. Schliebner, “Completeness of compact Lorentzian manifolds with special holonomy”, Math. Ann., 364 (2016), 1469–1503 | DOI | MR | Zbl

[12] J. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture, Clay Mathematics Monographs, 3, Amer. Math. Soc., Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007 | MR

[13] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983 | MR | Zbl

[14] M. Sánchez, “An Introduction to the Completeness of Compact Semi-Riemannian Manifolds”, Sémin. Théor. Spectr. Géom., 13, Univ. Grenoble I, Saint-Martin-d'Hères, 1995, 37–53 | MR | Zbl

[15] Math. Notes, 86 (2009), 447–450 | DOI | DOI | MR | Zbl