On the sharpness of one integral inequality for closed curves in $\mathbb R^4$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 502-509

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharpness of the integral inequality $\int_\gamma\sqrt{k_1^2+k_2^2+k_3^2} ds>2\pi$ for closed curves with nowhere vanishing curvatures in $\mathbb R^4$ is discussed. We prove that an arbitrary closed curve of constant positive curvatures in $\mathbb R^4$ satisfies the inequality $\int_\gamma\sqrt{k_1^2+k_2^2+k_3^2} ds\geq 2\sqrt{5}\pi$.
@article{JMAG_2019_15_a2,
     author = {Vasyl Gorkavyy and Raisa Posylaieva},
     title = {On the sharpness of one integral inequality for closed curves in $\mathbb R^4$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {502--509},
     publisher = {mathdoc},
     volume = {15},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_a2/}
}
TY  - JOUR
AU  - Vasyl Gorkavyy
AU  - Raisa Posylaieva
TI  - On the sharpness of one integral inequality for closed curves in $\mathbb R^4$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 502
EP  - 509
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_a2/
LA  - en
ID  - JMAG_2019_15_a2
ER  - 
%0 Journal Article
%A Vasyl Gorkavyy
%A Raisa Posylaieva
%T On the sharpness of one integral inequality for closed curves in $\mathbb R^4$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 502-509
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_a2/
%G en
%F JMAG_2019_15_a2
Vasyl Gorkavyy; Raisa Posylaieva. On the sharpness of one integral inequality for closed curves in $\mathbb R^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 502-509. http://geodesic.mathdoc.fr/item/JMAG_2019_15_a2/