Quasi-stability method in study of asymptotic behavior of dynamical systems
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 448-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we have made an attempt to present the contemporary ideas and methods of investigation of qualitative dynamics of infinite dimensional dissipative systems. Essential concepts such as dissipativity and asymptotic smoothness of dynamical systems, global and fractal attractors, determining functionals, regularity of asymptotic dynamics are presented. We place the emphasis on the quasi-stability method developed by I. Chueshov and I. Lasiecka. The method is based on an appropriate decomposition of the difference of the trajectories into a stable and a compact parts. The existence of this decomposition has a lot of important consequences: asymptotic smoothness, existence and finite dimensionality of attractors, existence of a finite set of determining functionals, and (under some additional conditions) existence of a fractal exponential attractor. The rest of the paper shows the application of the abstract theory to specific problems. The main attention is paid to the demonstration of the scope of the quasi-stability method.
@article{JMAG_2019_15_a1,
     author = {Igor Chueshov and Tamara Fastovska and Iryna Ryzhkova},
     title = {Quasi-stability method in study of asymptotic behavior of dynamical systems},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {448--501},
     publisher = {mathdoc},
     volume = {15},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_a1/}
}
TY  - JOUR
AU  - Igor Chueshov
AU  - Tamara Fastovska
AU  - Iryna Ryzhkova
TI  - Quasi-stability method in study of asymptotic behavior of dynamical systems
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 448
EP  - 501
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_a1/
LA  - en
ID  - JMAG_2019_15_a1
ER  - 
%0 Journal Article
%A Igor Chueshov
%A Tamara Fastovska
%A Iryna Ryzhkova
%T Quasi-stability method in study of asymptotic behavior of dynamical systems
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 448-501
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_a1/
%G en
%F JMAG_2019_15_a1
Igor Chueshov; Tamara Fastovska; Iryna Ryzhkova. Quasi-stability method in study of asymptotic behavior of dynamical systems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 448-501. http://geodesic.mathdoc.fr/item/JMAG_2019_15_a1/

[1] G. Avalos, F. Bucci, “Rational rates of uniform decay for strong solutions to a fluid-structure PDE system”, J. Differential Equations, 258 (2015), 4398–4423 | DOI | MR | Zbl

[2] A. Babin, M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992 | MR | Zbl

[3] A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex, Springer, Berlin-Heidelberg, 2008 | MR

[4] J. Ball, “Global attractors for semilinear wave equations”, Discrete Contin. Dyn. Syst., 10 (2004), 31–52 | DOI | MR | Zbl

[5] L. Boutet de Monvel, I. Chueshov, “Oscillation of von Karman's plate in a potential flow of gas”, Izv. Ross. Akad. Nauk Ser. Mat., 63 (1999), 219–244 | MR | Zbl

[6] L. Boutet de Monvel, I. Chueshov, A. Rezounenko, “Long-time behaviour of strong solutions of retarded nonlinear PDEs”, Comm. Partial Differential Equations, 22 (1997), 1453–1474 | DOI | MR | Zbl

[7] F. Bucci, I. Chueshov, “Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations”, Discrete Contin. Dyn. Syst., 22 (2008), 557–586 | DOI | MR | Zbl

[8] F. Bucci, I. Chueshov, I. Lasiecka, “Global attractor for a composite system of nonlinear wave and plate equations”, Commun. Pure Appl. Anal., 6 (2007), 113–140 | DOI | MR | Zbl

[9] T. Caraballo, I. Chueshov, P. Kloeden, “Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain”, SIAM J. Math. Anal., 38 (2007), 1489–1507 | DOI | MR | Zbl

[10] A. Carvalho, M. R.T. Primo, “Boundary synchronization in parabolic problems with nonlinear boundary conditions”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 7 (2000), 541–560 | MR | Zbl

[11] A. Carvalho, H. Rodrigues, T. Dlotko, “Upper semicontinuity of attractors and synchronization”, J. Math. Anal. Appl., 220 (1998), 13–41 | DOI | MR | Zbl

[12] A. Chambolle, B. Desjardins, M. Esteban, C. Grandmont, “Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate”, J. Math. Fluid Mech., 7 (2005), 368–404 | DOI | MR | Zbl

[13] V. Chepyzhov, M. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[14] Journal of Soviet Mathematics, 58 (1992), 385–390 | DOI | MR

[15] I. Chueshov, “On the finiteness of the number of determining elements for von Karman evolution equations”, Math. Methods Appl. Sci., 20 (1997), 855–865 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] I. Chueshov, “Theory of functionals that uniquely determine asymptotic dynamics of infinite-dimensional dissipative systems”, Russian Math. Surveys, 53 (1998), 731–776 | DOI | MR | Zbl

[17] I.D. Chueshov, “Dynamics of von Karman plate in a potential flow of gas: rigorous results and unsolved problems”, Proceedings of 16th IMACS World Congress, eds. M. Deville, R. Owens, EPFL Scientific Publications, 2000, 1–6

[18] Acta, Kharkov, 2002 http://www.emis.de/monographs/Chueshov/ | MR | Zbl

[19] I. Chueshov, “A reduction principle for coupled nonlinear parabolic-hyperbolic PDE”, J. Evol. Equ., 4 (2004), 591–612 | DOI | MR | Zbl

[20] I. Chueshov, “Invariant manifolds and nonlinear master-slave synchronization in coupled systems”, Appl. Anal., 86 (2007), 269–286 | DOI | MR | Zbl

[21] I. Chueshov, “A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate”, Math. Methods Appl. Sci., 34 (2011), 1801–1812 | DOI | MR | Zbl

[22] I. Chueshov, “Long-time dynamics of Kirchhoff wave models with strong nonlinear damping”, J. Differential Equations, 252 (2012), 1229–1262 | DOI | MR | Zbl

[23] I. Chueshov, “Quantum Zakharov model in a bounded domain”, Z. Angew. Math. Phys., 64:4 (2013), 967–989 | DOI | MR | Zbl

[24] I. Chueshov, Discrete data assimilation via Ladyzhenskaya squeezing property in the 3D viscous primitive equations, arXiv: 1308.1570

[25] I. Chueshov, “Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid”, Nonlinear Anal., 95 (2014), 650–665 | DOI | MR | Zbl

[26] I. Chueshov, “Interaction of an elastic plate with a linearized inviscid incompressible fluid”, Commun. Pure Appl. Anal., 13 (2014), 1759–1778 | DOI | MR | Zbl

[27] I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, New York, 2015 | MR | Zbl

[28] I. Chueshov, “Synchronization in coupled second order in time infinite-dimensional models”, Dyn. Partial Differ. Equ., 13:1 (2016), 1–29 | DOI | MR | Zbl

[29] I. Chueshov, “Remark on an elastic plate interacting with a gas in a semi-infinite tube: periodic solutions”, Evol. Equ. Control Theory, 5:4 (2016), 561–566 | DOI | MR | Zbl

[30] I. Chueshov, E. Dowell, I. Lasiecka, J. T. Webster, “Von Karman plate in a gas flow: recent results and conjectures”, Appl. Math. Optim., 73:3 (2016), 475–500 | DOI | MR | Zbl

[31] I. Chueshov, E. Dowell, I. Lasiecka, J. T. Webster, “Mathematical Aeroelasticity: A Survey”, Mathematics in Engineering, Sciense and Aerospace, 7 (2016), 5–29

[32] I. Chueshov, M. Eller, I. Lasiecka, “Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation”, Commun. Partial Differential Equations, 29 (2004), 1847–1976 | DOI | MR

[33] I. Chueshov, S. Kolbasin, “Plate models with state-dependent damping coefficient and their quasi-static limits”, Nonlinear Anal., 73 (2010), 1626–1644 | DOI | MR | Zbl

[34] I. Chueshov, S. Kolbasin, “Long-time dynamics in plate models with strong nonlinear damping”, Commun. Pure Appl. Anal., 11 (2012), 659–674 | DOI | MR | Zbl

[35] I. Chueshov, I. Lasiecka, “Attractors for second order evolution equations with a nonlinear damping”, J. Dynam. Differential Equations, 16 (2004), 469–512 | DOI | MR | Zbl

[36] I. Chueshov, I. Lasiecka, “Global attractors for Mindlin–Timoshenko plates and for their Kirchhoff limits”, Milan J. Math., 74 (2006), 117–138 | DOI | MR | Zbl

[37] I. Chueshov, I. Lasiecka, “Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff–Boussinesq models”, Discrete Contin. Dyn. Syst., 15 (2006), 777–809 | DOI | MR | Zbl

[38] I. Chueshov, I. Lasiecka, “Long-time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents”, Control Methods in PDE-Dynamical systems, Contemp. Math., 426, Amer. Math. Soc., Providence, RI, 2007, 153–192 | DOI | MR | Zbl

[39] I. Chueshov, I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc., 195, Amer. Math. Soc., Providence, RI, 2008 | MR

[40] I. Chueshov, I. Lasiecka, “Attractors and long-time behavior of von Karman thermoelastic plates”, Appl. Math. Optim., 58 (2008), 195–241 | DOI | MR | Zbl

[41] I. Chueshov, I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010 | MR | Zbl

[42] I. Chueshov, I. Lasiecka, “On global attractor for 2D Kirchhoff–Boussinesq model with supercritical nonlinearity”, Comm. Partial Differential Equations, 36 (2011), 67–99 | DOI | MR | Zbl

[43] I. Chueshov, I. Lasiecka, “Well-posedness and long-time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents”, HCDTE Lecture Notes, v. I, AIMS Ser. Appl. Math., 6, Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013 | MR

[44] I. Chueshov, I. Lasiecka, D. Toundykov, “Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent”, Discrete Contin. Dyn. Syst., 20 (2008), 459–509 | DOI | MR | Zbl

[45] I. Chueshov, I. Lasiecka, D. Toundykov, “Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent”, J. Dynam. Differential Equations, 21 (2009), 269–314 | DOI | MR | Zbl

[46] I. Chueshov, I. Lasiecka, J. T. Webster, “Evolution semigroups for supersonic flow-plate interactions”, J. Differential Equations, 254 (2013), 1741–1773 | DOI | MR | Zbl

[47] I. Chueshov, I. Lasiecka, J. T. Webster, “Flow-plate interactions: well-posedness and long-time behavior”, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 925–965 | DOI | MR | Zbl

[48] I. Chueshov, I. Lasiecka, J. T. Webster, “Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping”, Comm. Partial Differential Equations, 39 (2014), 1965–1997 | DOI | MR | Zbl

[49] I. Chueshov, A. Rezounenko, “Global attractors for a class of retarded quasilinear partial differential equations”, C. R. Acad. Sci. Paris, Ser. I, 321 (1995), 607–612 | MR | Zbl

[50] I. Chueshov, A. Rezounenko, “Dynamics of second order in time evolution equations with state-dependent delay”, Nonlinear Anal., 123 (2015), 126–149 | DOI | MR | Zbl

[51] I. Chueshov, A. Rezounenko, “Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay”, Commun. Pure Appl. Anal., 14 (2015), 1685–1704 | DOI | MR | Zbl

[52] I. Chueshov, I. Ryzhkova, “A global attractor for a fluid–plate interaction model”, Commun. Pure Appl. Anal., 12 (2013), 1635–1656 | DOI | MR | Zbl

[53] I. Chueshov, I. Ryzhkova, “Unsteady interaction of a viscous fluid with an elastic plate modeled by full von Karman equations”, J. Differential Equations, 254 (2013), 1833–1862 | DOI | MR | Zbl

[54] I. Chueshov, I. Ryzhkova, “On the interaction of an elastic wall with a Poiseuille-type flow”, Ukrainian Math. J., 65:1 (2013), 158–177 | DOI | MR | Zbl

[55] I. Chueshov, B. Schmalfuss, “Stochastic dynamics in a fluid–plate interaction model with the only longitudinal deformations of the plate”, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 833–852 | MR | Zbl

[56] I. Chueshov, A. Shcherbina, “On 2D Zakharov system in a bounded domain”, Differential Integral Equations, 18 (2005), 781–812 | MR | Zbl

[57] I. Chueshov, A. Shcherbina, “Semi-weak well-posedness and attractor for 2D Schrödinger–Boussinesq equations”, Evolution Equations and Control Theory, 1 (2012), 57–80 | DOI | MR | Zbl

[58] P. Ciarlet, Mathematical Elasticity. Theory of Shells, North-Holland, Amsterdam, 2000 | Zbl

[59] P. Ciarlet, P. Rabier, Les Equations de von Karman, Springer, Berlin, 1980 | MR | Zbl

[60] B. Cockburn, D.A. Jones, E. Titi, “Determining degrees of freedom for nonlinear dissipative systems”, C.R. Acad. Sci. Paris, Ser. I, 321 (1995), 563–568 | MR | Zbl

[61] B. Cockburn, D. A. Jones, E. Titi, “Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems”, Math. Comp., 66 (1997), 1073–1087 | DOI | MR | Zbl

[62] B. D. Coleman, M. E. Gurtin, “Equipresence and constitutive equations for rigid heat conductors”, Z. Angew. Math. Phys., 18 (1967), 199–208 | DOI | MR

[63] P. Constantin, C. Doering, E. Titi, “Rigorous estimates of small scales in turbulent flows”, J. Math. Phys., 37 (1996), 6152–6156 | DOI | MR | Zbl

[64] P. Constantin, C. Foias, R. Temam, Attractors Representing Turbulent Flows, Mem. Amer. Math. Soc., 53, no. 314, Amer. Math. Soc., Providence, RI, 1985 | MR

[65] C.M. Dafermos, “Asymptotic stability in viscoelasticity”, Arch. Ration. Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[66] O. Diekmann, S. van Gils, S. Lunel, H.-O. Walther, Delay Equations, Springer, Berlin, 1995 | MR | Zbl

[67] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential Attractors for Dissipative Evolution Equations, Masson, Paris, 1994 | MR | Zbl

[68] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990 | MR | Zbl

[69] T. Fastovska, “Upper semicontinuous attractor for 2D Mindlin–Timoshenko thermoelastic model with memory”, Commun. Pure Appl. Anal., 6 (2007), 83–101 | DOI | MR | Zbl

[70] T. Fastovska, “Upper semicontinuous attractors for a 2D Mindlin–Timoshenko thermo-viscoelastic model with memory”, Nonlinear Anal., 71 (2009), 4833–4851 | DOI | MR | Zbl

[71] I. Flahaut, “Attractors for the dissipative Zakharov system”, Nonlinear Anal., 16 (1991), 599–633 | DOI | MR | Zbl

[72] C. Foias, O. Manley, R. Temam, Y. M. Treve, “Asymptotic analysis of the Navier–Stokes equations”, Phys. D, 9 (1983), 157–188 | DOI | MR | Zbl

[73] C. Foias, G. Prodi, “Sur le comportement global des solutions non stationnaires des equations de Navier–Stokes en dimension deux”, Rend. Semin. Mat. Univ. Padova, 39 (1967), 1–34 | MR

[74] C. Foias, R. Temam, “Determination of solutions of the Navier–Stokes equations by a set of nodal values”, Math. Comp., 43 (1984), 117–133 | DOI | MR | Zbl

[75] C. Foias, E. S. Titi, “Determining nodes, finite difference schemes and inertial manifolds”, Nonlinearity, 4 (1991), 135–153 | DOI | MR | Zbl

[76] L.G. Garcia, F. Haas, J. Goedert, L. P. Oliveira, “Modified Zakharov equations for plasmas with a quantum correction”, Phys. Plasmas, 12 (2005), 012302 | DOI

[77] O. Goubet, I. Moise, “Attractor for dissipative Zakharov system”, Nonlinear Anal., 7 (1998), 823–847 | DOI | MR | Zbl

[78] S. Gourley, J. So, J. Wu, “Non-locality of reaction–dffusion equations induced by delay: biological modeling and nonlinear dynamics”, Journal of Mathematical Sciences, 4 (2004), 5119–5153 | DOI | MR

[79] M. Grobbelaar-Van Dalsen, “Strong stability for a fluid-structure model”, Math. Methods Appl. Sci., 32 (2009), 1452–1466 | DOI | MR | Zbl

[80] M.E. Gurtin, V. Pipkin, “A general theory of heat conduction with finite wave speeds”, Arch. Rational Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[81] F. Haas, P. K. Shukla, “Quantum and classical dynamics of Langmuir wave packets”, Phys. Rev. E, 79 (2009), 066402 | DOI | MR

[82] J. Hale, “Diffusive coupling, dissipation, and synchronization”, J. Dynam. Differential Equations, 9 (1997), 1–52 | DOI | MR | Zbl

[83] J.K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[84] A. Haraux, Semilinear Hyperbolic Problems in Bounded Domains, Mathematical Reports, 3, Harwood Gordon Breach, New York, 1987 | MR

[85] K. Hayden, E. Olson, E. S. Titi, “Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations”, Phys. D, 240 (2011), 1416–1425 | DOI | MR | Zbl

[86] D.A. Jones, E. S. Titi, “Determination of the solutions of the Navier–Stokes equations by finite volume elements”, Phys. D, 60 (1992), 165–174 | DOI | MR | Zbl

[87] D.A. Jones, E. S. Titi, “Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations”, Indiana Univ. Math. J., 42 (1993), 875–887 | DOI | MR | Zbl

[88] L.V. Kapitansky, I. N. Kostin, “Attractors of nonlinear evolution equations and their approxiamtins”, Leningrad Math. J., 2 (1991), 97–117 | MR

[89] A.K. Khanmamedov, “Global attractors for von Karman equations with nonlinear dissipation”, J. Math. Anal. Appl., 318 (2006), 92–101 | DOI | MR | Zbl

[90] H. Koch, I. Lasiecka, “Hadamard wellposedness of weak solutions in nonlinear elasticity-full von Karman systems”, Evolution equations, semigroups and functional analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002, 197–216 | MR | Zbl

[91] J. Soviet Math., 3:4 (1975), 458–479 | DOI | MR | Zbl | Zbl

[92] J. Soviet Math., 49 (1990), 1186–1201 | DOI | MR | Zbl | Zbl

[93] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[94] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989 | MR | Zbl

[95] J. Lagnese, J. L. Lions, Modeling, Analysis and Control of Thin Plates, Masson, Paris, 1988 | MR

[96] I. Lasiecka, Mathematical Control Theory of Coupled PDE's, CBMS-NSF Lecture Notes, SIAM, Philadelphia, 2002 | MR | Zbl

[97] I. Lasiecka, J. T. Webster, “Eliminating flutter for clamped von Karman plates immersed in subsonic flows”, Commun. Pure Appl. Anal., 13 (2014), 1935–1969 | DOI | MR | Zbl

[98] I. Lasiecka, J. T. Webster, “Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow”, SIAM J. Math. Anal., 48:3 (2016), 1848–1891 | DOI | MR | Zbl

[99] G. Leonov, V. Reitmann, V. Smirnova, Non-Local Methods for Pendulum-Like Feedback Systems, Teubner, Stuttgart-Leipzig, 1992 | MR | Zbl

[100] G. Leonov, V. Smirnova, Mathematical Problems of Phase Synchronization Theory, Nauka, St. Petersburg, 2000 (Russian) | Zbl

[101] J.L. Lions, “On some questions in boundary value problems in mathematical physics”, Contemporary Development in Continuum Mechanics and PDE, Proc. Internat. Sympos. (Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., 30, North-Holland, Amsterdam–New York, 1978, 284–346 | DOI | MR | Zbl

[102] J. Málek, J. Nečas, “A finite dimensional attractor for three dimensional flow of incompressible fluids”, J. Differential Equations, 127 (1996), 498–518 | DOI | MR | Zbl

[103] J. Málek, D. Pražak, “Large time behavior via the method of $l$-trajectories”, J. Differential Equations, 181 (2002), 243–279 | DOI | MR | Zbl

[104] B.S. Massey, J. Ward-Smith, Mechanics of Fluids, 8th ed., Taylor Francis, New York, 2006

[105] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4, eds. C.M. Dafermos, M. Pokorny, Elsevier, Amsterdam, 2008 | MR

[106] I. Moise, R. Rosa, X. Wang, “Attractors for non-compact semigroups via energy equations”, Nonlinearity, 11 (1998), 1369–1393 | DOI | MR | Zbl

[107] E. Mosekilde, Y. Maistrenko, D. Postnov, Chaotic Synchronization, World Scientific Publishing Co., River Edge, NJ, 2002 | MR | Zbl

[108] O. Naboka, “Synchronization of nonlinear oscillations of two coupling Berger plates”, Nonlinear Anal., 67 (2007), 1015–1026 | DOI | MR | Zbl

[109] O. Naboka, “Synchronization phenomena in the system consisting of m coupled Berger plates”, J. Math. Anal. Appl., 341 (2008), 1107–1124 | DOI | MR | Zbl

[110] O. Naboka, “On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping”, Commun. Pure Appl. Anal., 8 (2009), 1933–1956 | DOI | MR | Zbl

[111] G. Osipov, J. Kurths, C. Zhou, Synchronization in Oscillatory Networks, Springer, Berlin–Heidelberg, 2007 | MR | Zbl

[112] T.J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, 1980 | Zbl

[113] M. Potomkin, “Asymptotic behavior of thermoviscoelastic Berger plate”, Commun. Pure Appl. Anal., 9 (2010), 161–192 | DOI | MR | Zbl

[114] D. Pražak, “On finite fractal dimension of the global attractor for the wave equation with nonlinear damping”, J. Dynam. Differential Equations, 14 (2002), 764–776

[115] G. Raugel, Global attractors in partial differential equations, Handbook of Dynamical Systems, 2, ed. B. Fiedler, Elsevier Sciences, Amsterdam, 2002 | MR | Zbl

[116] A.V. Rezounenko, P. Zagalak, “Non-local PDEs with discrete state-dependent delays: well-posedness in a metric space”, Discrete Contin. Dyn. Syst., 33 (2013), 819–835 | DOI | MR | Zbl

[117] H. Rodrigues, “Abstract methods for synchronization and applications”, Appl. Anal., 62 (1996), 263–296 | DOI | MR | Zbl

[118] I. Ryzhkova, “Stabilization of a von Karman plate in the presence of thermal effects in a subsonic potential flow of gas”, J. Math. Anal. Appl., 294 (2004), 462–481 | DOI | MR | Zbl

[119] I. Ryzhkova, “On a retarded PDE system for a von Karman plate with thermal effects in the flow of gas”, Zh. Mat. Fiz. Anal. Geom., 12:2 (2005), 173–186 | MR | Zbl

[120] I. Ryzhkova, “Dynamics of a thermoelastic von Karman plate in a subsonic gas flow”, Z. Angew. Math. Phys., 58 (2007), 246–261 | DOI | MR | Zbl

[121] V.I. Sedenko, “On the uniqueness theorem for generalized solutions of initial-boundary problems for the Marguerre–Vlasov vibrations of shallow shells with clamped boundary conditions”, Appl. Math. Optim., 39 (1999), 309–326 | DOI | MR | Zbl

[122] G.R. Sell, Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002 | MR | Zbl

[123] A.P.S. Selvadurai, Elastic Analysis of Soil Foundation Interaction, Elsevier, Amsterdam, 1979

[124] M. Sermange, R. Temam, “Some mathematical questions related to MHD equations”, Commun. Pure Appl. Math., 36 (1983), 635–664 | DOI | MR | Zbl

[125] S. Strogatz, Sync, Hyperion Books, New York, 2003 | MR

[126] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988 | MR | Zbl

[127] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, Amer. Math. Soc. Chelsea Publishing, Providence, RI, 2001 | MR | Zbl

[128] I.I. Vorovich, “On some direct methods in nonlinear oscillations of shallow shells”, Izv. Akad. Nauk SSSR. Ser. Mat., 21:6 (1957), 747–784 (Russian) | MR

[129] C.W. Wu, Synchronization in coupled chaotic circuits and systems, World Scientific Publishing Co., River Edge, NJ, 2002 | MR | Zbl

[130] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl

[131] V.E. Zakharov, “Collapse of Langmuir waves”, Sov. Phys. JETP, 35 (1972), 908–912 | MR