A study concerning Berger type deformed Sasaki metric on the tangent bundle
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 435-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $TM$ be the tangent bundle over an almost anti-paraHermitian manifold endowed with Berger type deformed Sasaki metric $g_{BS}$. In this paper, first, we obtain the Levi-Civita connection of this metric and study geodesics on $TM$. Secondly, we construct some almost anti-paraHermitian structures on $TM$ and search conditions for these structures to be anti-paraKähler and quasi-anti-paraKähler. Finally, we present certain Riemannian curvature properties of $(TM,g_{BS})$.
@article{JMAG_2019_15_a0,
     author = {Murat Altunbas and Ramazan Simsek and Ayd{\i}n Gezer},
     title = {A study concerning {Berger} type deformed {Sasaki} metric on the tangent bundle},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {435--447},
     publisher = {mathdoc},
     volume = {15},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_a0/}
}
TY  - JOUR
AU  - Murat Altunbas
AU  - Ramazan Simsek
AU  - Aydın Gezer
TI  - A study concerning Berger type deformed Sasaki metric on the tangent bundle
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 435
EP  - 447
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_a0/
LA  - en
ID  - JMAG_2019_15_a0
ER  - 
%0 Journal Article
%A Murat Altunbas
%A Ramazan Simsek
%A Aydın Gezer
%T A study concerning Berger type deformed Sasaki metric on the tangent bundle
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 435-447
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_a0/
%G en
%F JMAG_2019_15_a0
Murat Altunbas; Ramazan Simsek; Aydın Gezer. A study concerning Berger type deformed Sasaki metric on the tangent bundle. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 435-447. http://geodesic.mathdoc.fr/item/JMAG_2019_15_a0/

[1] M.T.K. Abbassi, “Note on the classification theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifold $(M,g)$”, Comment. Math. Univ. Carolin., 45:4 (2004), 591–596 | MR | Zbl

[2] M.T.K. Abbassi, M. Sarih, “On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds”, Differential Geom. Appl., 22:1 (2005), 19–47 | DOI | MR | Zbl

[3] M.T.K. Abbassi, M. Sarih, “On natural metrics on tangent bundles of Riemannian manifolds”, Arch. Math., 41 (2005), 71–92 | MR | Zbl

[4] V. Cruceanu, P. Fortuny, P. M. Gadea, “A survey on paracomplex geometry”, Rocky Mountain J. Math., 26:1 (1996), 83–115 | DOI | MR | Zbl

[5] P. Dombrowski, “On the geometry of the tangent bundles”, J. Reine and Angew. Math., 210 (1962), 73–88 | MR | Zbl

[6] A. Fujimoto, Theory of G-structures, Publ. Study Group of Geometry, 1, Tokyo Univ., Tokyo, 1972 | MR

[7] A. Gezer, “On the tangent bundle with deformed Sasaki metric”, Int. Electron. J. Geom., 6:2 (2013), 19–31 | MR | Zbl

[8] A. Gezer, M. Altunbas, “Some notes concerning Riemannian metrics of Cheeger Gromoll type”, J. Math. Anal. Appl., 396:1 (2012), 119–132 | DOI | MR | Zbl

[9] A. Gezer, M. Altunbas, “On the geometry of the rescaled Riemannian metric on tensor bundles of arbitrary type”, Kodai Math. J., 38:1 (2015), 37–64 | DOI | MR | Zbl

[10] H.Z. Hou, L. Sun, “Geometry of tangent bundle with Cheeger–Gromoll type metric”, J. Math. Anal. App., 402 (2013), 493–504 | DOI | MR | Zbl

[11] O. Kowalski, “Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl

[12] M. de Leon, P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 1989 | MR | Zbl

[13] M. Manev, D. Mekerov, “On Lie groups as quasi-Kä hler manifolds with Killing Norden metric”, Adv. Geom., 8:3 (2008), 343–352 | DOI | MR | Zbl

[14] M.I. Munteanu, “Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold”, Mediterr. J. Math., 5:1 (2008), 43–59 | DOI | MR | Zbl

[15] E. Musso, F. Tricerri, “Riemannian Metrics on Tangent Bundles”, Ann. Mat. Pura. Appl., 150:4 (1988), 1–19 | DOI | MR | Zbl

[16] A.A. Salimov, M. Iscan, K. Akbulut, “Notes on para-Norden-Walker 4-manifolds”, Int. J. Geom. Methods Mod. Phys., 7:8 (2010), 1331–1347 | DOI | MR | Zbl

[17] A.A. Salimov, M. Iscan, F. Etayo, “Paraholomorphic B-manifold and its properties”, Topology Appl., 154:4 (2007), 925–933 | DOI | MR | Zbl

[18] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds”, Tohoku Math. J., 10 (1958), 338–358 | DOI | MR

[19] A. Yampolsky, “On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kahlerian manifolds”, Zh. Mat. Fiz. Anal., Geom., 8:2 (2012), 177–189 | MR | Zbl

[20] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973 | MR | Zbl

[21] A. Zagane, M. Djaa, “On geodesics of warped Sasaki metric”, Mathematical Sci. and App. E-Notes, 5:1 (2017), 85–92 | MR | Zbl