The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 532-548

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete self-adjoint Dirac systems determined by the potentials (sequences) $\{C_k\}$ such that the matrices $C_k$ are positive definite and $j$-unitary, where $j$ is a diagonal $m\times m$ matrix which has $m_1$ entries $1$ and $m_2$ entries $-1$ ($m_1+m_2=m$) on the main diagonal. We construct systems with the rational Weyl functions and explicitly solve the inverse problem to recover systems from the contractive rational Weyl functions. Moreover, we study the stability of this procedure. The matrices $C_k$ (in the potentials) are the so-called Halmos extensions of the Verblunsky-type coefficients $\rho_k$. We show that in the case of the contractive rational Weyl functions the coefficients $\rho_k$ tend to zero and the matrices $C_k$ tend to the identity matrix $I_m$.
@article{JMAG_2018_14_a5,
     author = {Inna Roitberg and Alexander Sakhnovich},
     title = {The discrete self-adjoint {Dirac} systems of general type: explicit solutions of direct and inverse problems, asymptotics of {Verblunsky-type} coefficients and the stability of solving of the inverse problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {532--548},
     publisher = {mathdoc},
     volume = {14},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_a5/}
}
TY  - JOUR
AU  - Inna Roitberg
AU  - Alexander Sakhnovich
TI  - The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 532
EP  - 548
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_a5/
LA  - en
ID  - JMAG_2018_14_a5
ER  - 
%0 Journal Article
%A Inna Roitberg
%A Alexander Sakhnovich
%T The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 532-548
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_a5/
%G en
%F JMAG_2018_14_a5
Inna Roitberg; Alexander Sakhnovich. The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 532-548. http://geodesic.mathdoc.fr/item/JMAG_2018_14_a5/