The maximal ``kinematical'' invariance group for an arbitrary potential revised
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 519-531

Voir la notice de l'article provenant de la source Math-Net.Ru

Group classification of one particle Schrödinger equations with arbitrary potentials (C.P. Boyer, Helv. Phys. Acta 47 (1974), p. 450) is revised. The corrected completed list of non-equivalent potentials and the corresponding symmetries is presented together with exact identification of symmetry algebras and admissible equivalence transformations.
@article{JMAG_2018_14_a4,
     author = {A. G. Nikitin},
     title = {The maximal ``kinematical'' invariance group for an arbitrary potential revised},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {519--531},
     publisher = {mathdoc},
     volume = {14},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/}
}
TY  - JOUR
AU  - A. G. Nikitin
TI  - The maximal ``kinematical'' invariance group for an arbitrary potential revised
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 519
EP  - 531
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/
LA  - en
ID  - JMAG_2018_14_a4
ER  - 
%0 Journal Article
%A A. G. Nikitin
%T The maximal ``kinematical'' invariance group for an arbitrary potential revised
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 519-531
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/
%G en
%F JMAG_2018_14_a4
A. G. Nikitin. The maximal ``kinematical'' invariance group for an arbitrary potential revised. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 519-531. http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/