Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2018_14_a4, author = {A. G. Nikitin}, title = {The maximal ``kinematical'' invariance group for an arbitrary potential revised}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {519--531}, publisher = {mathdoc}, volume = {14}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/} }
TY - JOUR AU - A. G. Nikitin TI - The maximal ``kinematical'' invariance group for an arbitrary potential revised JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 519 EP - 531 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/ LA - en ID - JMAG_2018_14_a4 ER -
A. G. Nikitin. The maximal ``kinematical'' invariance group for an arbitrary potential revised. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 519-531. http://geodesic.mathdoc.fr/item/JMAG_2018_14_a4/
[1] R.L. Anderson, S. Kumei, C. E. Wulfman, “Invariants of the equations of wave mechanics. I”, Rev. Mexicana FG-s., 21 (1972), 1–33 | MR
[2] P. Basarab-Horwath, L. Lahno, R. Zhdanov, “The structure of the Lie algebras and the classification problem of partial differential equations”, Acta Appl. Math., 69 (2001), 43–94 | DOI | MR | Zbl
[3] C. P. Boyer, “The maximal ‘kinematical’ invariance group for an arbitrary potential”, Helv. Phys. Acta, 47 (1974), 450–605 | MR
[4] V. Boyko, J. Patera, R. Popovych, “Computation of invariants of Lie algebras by means of moving frames”, J. Phys. A, 39 (2006), 5749–5762 | DOI | MR | Zbl
[5] W. I. Fushchich, L. F. Barannyk, A. F. Barannyk, Subgroup Analysis of Galilei and Poincare Groups and Reduction of Nonlinear Equations, Naukova Dumka, Kiev, 1991 (Russian) | MR | Zbl
[6] W. I. Fushchich, A. G. Nikitin, “Conformal invariance of relativistic equations for arbitrary spin particles”, Lett. Math. Phys., 2 (1977/78), 471–475 | DOI | MR
[7] W. I. Fushchich, A. G. Nikitin, “Higher symmetries and exact solutions of linear and nonlinear Schrödinger equation”, J. Math. Phys., 38 (1997), 5944–5959 | DOI | MR
[8] C. R. Hagen, “Scale and conformal transformations in Galilean-invariant conformal field theory”, Phys. Rev., D5 (1972), 377–388
[9] J.-M. Levy-Leblond, “Galilei group and non-relativistic quantum mechanics”, J. Math. Phys., 4 (1963), 776–788 | DOI | MR | Zbl
[10] W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1977 | MR | Zbl
[11] G. M. Murakzianov, “Classification of real structures of Lie algebras of fifth order”, Izv. Vyssh. Uchebn. Zaved. Mat., 3 (1963), 99–106 (Russian) | MR
[12] U. Niederer, “The maximal kinematical invariance group of the free Schrödinger equations”, Helv. Phys. Acta, 45 (1972), 802–810 | MR
[13] U. Niederer, “The maximal kinematical invariance group of the harmonic oscillator”, Helv. Phys. Acta, 47 (1973), 191–200 | MR
[14] U. Niederer, “The Group Theoretical Equivalence of the Free Particle, the Harmonic Oscillator and the Free Fall”, Proceedings of the 2nd International Colloquium on Group Theoretical Methods in Physics (University of Nijmegen, The Netherlands, 1973)
[15] A. G. Nikitin, “Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginsburg–Landau equations”, J. Math. Anal. Appl., 324 (2006), 615–628 | DOI | MR | Zbl
[16] A. G. Nikitin, “Kinematical invariance groups of the 3d Schrödinger equations with position dependent masses”, J. Math. Phys., 58 (2017), 083508 | DOI | MR | Zbl
[17] A. G. Nikitin, R. O. Popovich, “Group classification of nonlinear Schrödinger equations”, Ukrainian Math. J., 53 (2001), 1255–1265 | DOI | MR
[18] A. G. Nikitin, T. M. Zasadko, “Superintegrable systems with position dependent mass”, J. Math. Phys., 56 (2015), 042101 | DOI | MR | Zbl
[19] A. G. Nikitin, T. M. Zasadko, “Group classification of Schrödinger equations with position dependent mass”, J. Phys. A: Math. Theor., 49 (2016), 365204 | DOI | MR | Zbl
[20] R. O. Popovych, V. M. Boyko, M. O. Nesterenko, M. W. Lutfullin, “Realizations of real low-dimensional Lie algebras”, J. Phys. A, 36 (2003), 7337–7360 | DOI | MR | Zbl
[21] L. S̆nobl, P. Winternitz, Classification and Identification of Lie Algebras, CRM Monograph Series, 33, American Mathematical Society, Providence, RI, 2014 | MR
[22] Nucl. Phys., 4 (1967), 444–450 | MR