Long-time asymptotics for the Toda shock problem: non-overlapping spectra
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 406-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann–Hilbert factorization problems. We show that the half-plane of space/time variables splits into five main regions: The two regions far outside where the solution is close to the free backgrounds. The middle region, where the solution can be asymptotically described by a two band solution, and two regions separating them, where the solution is asymptotically given by a slowly modulated two band solution. In particular, the form of this solution in the separating regions verifies a conjecture from Venakides, Deift, and Oba from 1991.
@article{JMAG_2018_14_a1,
     author = {Iryna Egorova and Johanna Michor and Gerald Teschl},
     title = {Long-time asymptotics for the {Toda} shock problem: non-overlapping spectra},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {406--451},
     publisher = {mathdoc},
     volume = {14},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2018_14_a1/}
}
TY  - JOUR
AU  - Iryna Egorova
AU  - Johanna Michor
AU  - Gerald Teschl
TI  - Long-time asymptotics for the Toda shock problem: non-overlapping spectra
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 406
EP  - 451
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2018_14_a1/
LA  - en
ID  - JMAG_2018_14_a1
ER  - 
%0 Journal Article
%A Iryna Egorova
%A Johanna Michor
%A Gerald Teschl
%T Long-time asymptotics for the Toda shock problem: non-overlapping spectra
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 406-451
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2018_14_a1/
%G en
%F JMAG_2018_14_a1
Iryna Egorova; Johanna Michor; Gerald Teschl. Long-time asymptotics for the Toda shock problem: non-overlapping spectra. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 406-451. http://geodesic.mathdoc.fr/item/JMAG_2018_14_a1/

[1] A. Boutet de Monvel, I. Egorova, E. Khruslov, “Soliton asymptotics of the Cauchy problem solution for the Toda lattice”, Inverse Problems, 13:2 (1997), 223–237 | DOI | MR | Zbl

[2] A.M. Bloch, Y. Kodama, “The Whitham Equation and Shocks in the Toda Lattice”, Proceedings of the NATO Advanced Study Workshop on Singular Limits of Dispersive Waves (Lyons, July 1991), Plenum Press, New York, 1994 | MR | Zbl

[3] A. M. Bloch, Y. Kodama, “Dispersive regularization of the Whitham equation for the Toda lattice”, SIAM J. Appl. Math., 52 (1992), 909–928 | DOI | MR | Zbl

[4] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1954 | MR | Zbl

[5] P. Deift, S. Kamvissis, T. Kriecherbauer, X. Zhou, “The Toda rarefaction problem”, Comm. Pure Appl. Math., 49 (1996), 35–83 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] P. Deift, S. Venakides, X. Zhou, “The collisionless shock region for the long time behavior of solutions of the KdV equation”, Comm. Pure and Appl. Math., 47 (1994), 199–206 | DOI | MR | Zbl

[7] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems”, Ann. Math., 137 (1993), 295–368 | DOI | MR | Zbl

[8] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] I. Egorova, “The scattering problem for step-like Jacobi operator”, Mat. Fiz. Anal. Geom., 9:2 (2002), 188–205 | MR | Zbl

[10] I. Egorova, Z. Gladka, V. Kotlyarov, G. Teschl, “Long-time asymptotics for the Korteweg-de Vries equation with steplike initial data”, Nonlinearity, 26 (2013), 1839–1864 | DOI | MR | Zbl

[11] I. Egorova, J. Michor, G. Teschl, “Scattering theory for Jacobi operators with general steplike quasi-periodic background”, Zh. Mat. Fiz. Anal. Geom., 4:1 (2008), 33–62 | MR | Zbl

[12] I. Egorova, J. Michor, G. Teschl, “Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds”, J. Math. Physics, 50 (2009), 103522 | DOI | MR

[13] I. Egorova, J. Michor, G. Teschl, “Scattering theory with finite-gap backgrounds: transformation operators and characteristic properties of scattering data”, Math. Phys. Anal. Geom., 16 (2013), 111–136 | DOI | MR | Zbl

[14] I. Egorova, J. Michor, G. Teschl, “Rarefaction waves for the Toda equation via nonlinear steepest descent”, Discrete Contin. Dyn. Syst., 38 (2018), 2007–2028 | DOI | MR | Zbl

[15] St. Petersburg Math. J., 25:2 (2014), 223–240 | DOI | MR | Zbl

[16] H. Farkas, I. Kra, Riemann Surfaces, GTM, 71, Springer, New York, 1980 | MR | Zbl

[17] B. L. Holian, H. Flaschka, D. W. McLaughlin, “Shock waves in the Toda lattice: Analysis”, Phys. Rev. A, 24 (1981), 2595–2623 | DOI | MR

[18] B. L. Holian, G. K. Straub, “Molecular dynamics of shock waves in one-dimensional chains”, Phys. Rev. B, 18 (1978), 1593–1608 | DOI

[19] A. R. Its, “Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential equations”, Soviet Math. Dokl., 24 (1981), 452–456 | MR | Zbl

[20] S. Kamvissis, “On the Toda shock problem”, Phys. D, 65 (1993), 242–256 | DOI | MR

[21] S. Kamvissis, “On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity”, Comm. Math. Phys., 153:3 (1993), 479–519 | DOI | MR | Zbl

[22] S. Kamvissis, G. Teschl, “Stability of periodic soliton equations under short range perturbations”, Phys. Lett. A, 364 (2007), 480–483 | DOI | MR | Zbl

[23] S. Kamvissis, G. Teschl, “Long-time asymptotics of the periodic Toda lattice under short-range perturbations”, J. Math. Phys., 53 (2012), 073706 | DOI | MR | Zbl

[24] V. P. Kotlyarov, A. M. Minakov, “Riemann–Hilbert problem to the modified Korteweg–de Vries equation: Long-time dynamics of the step-like initial data”, J. Math. Phys., 51 (2010), 093506 | DOI | MR | Zbl

[25] V. P. Kotlyarov, A. M. Minakov, “Step-initial function to the mKdV equation: Hyper-elliptic long-time asymptotics of the solution”, Zh. Mat. Fiz. Anal. Geom., 8 (2012), 38–62 | MR | Zbl

[26] H. Krüger, G. Teschl, “Long-time asymptotics for the Toda lattice in the soliton region”, Math. Z., 262 (2009), 585–602 | DOI | MR | Zbl

[27] H. Krüger, G. Teschl, “Long-time asymptotics of the Toda lattice for decaying initial data revisited”, Rev. Math. Phys., 21 (2009), 61–109 | DOI | MR | Zbl

[28] H. Krüger, G. Teschl, “Stability of the periodic Toda lattice in the soliton region”, Int. Math. Res. Not., 2009:21 (2009), 3996–4031 | MR | Zbl

[29] S. V. Manakov, “Nonlinear Frauenhofer diffraction”, Sov. Phys. JETP, 38:4 (1974), 693–696

[30] J. Michor, “Wave phenomena of the Toda lattice with steplike initial data”, Phys. Lett. A, 380 (2016), 1110–1116 | DOI | MR | Zbl

[31] A. Mikikits-Leitner, G. Teschl, “Long-time asymptotics of perturbed finite-gap Korteweg–de Vries solutions”, J. d'Analyse Math., 116 (2012), 163–218 | DOI | MR | Zbl

[32] A. M. Minakov, “Asymptotics of rarefaction wave solution to the mKdV equation”, Zh. Mat. Fiz. Anal. Geom., 7 (2011), 59–86 | MR | Zbl

[33] N. I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd., Groningen, 1953 | MR | Zbl

[34] Yu. Rodin, The Riemann Boundary Problem on Riemann Surfaces, Mathematics and its Applications (Soviet Series), 16, D. Reidel Publishing Co., Dordrecht, 1988 | DOI | MR | Zbl

[35] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72, Amer. Math. Soc., Rhode Island, 2000 | MR | Zbl

[36] G. Teschl, “Algebro-geometric constraints on solitons with respect to quasi-periodic backgrounds”, Bull. London Math. Soc., 39:4 (2007), 677–684 | DOI | MR | Zbl

[37] G. Teschl, “On the spatial asymptotics of solutions of the Toda lattice”, Discrete Contin. Dyn. Syst., 27 (2010), 1233–1239 | DOI | MR | Zbl

[38] S. Venakides, P. Deift, R. Oba, “The Toda shock problem”, Comm. Pure Appl. Math., 44:8–9 (1991), 1171–1242 | DOI | MR | Zbl