Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2017_13_a4, author = {D. Zakora}, title = {On properties of root elements in the problem on small motions of viscous relaxing fluid}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {402--413}, publisher = {mathdoc}, volume = {13}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/} }
TY - JOUR AU - D. Zakora TI - On properties of root elements in the problem on small motions of viscous relaxing fluid JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 402 EP - 413 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/ LA - en ID - JMAG_2017_13_a4 ER -
D. Zakora. On properties of root elements in the problem on small motions of viscous relaxing fluid. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 402-413. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/
[1] D. Zakora, “On the Spectrum of Rotating Viscous Relaxing Fluid”, Zh. Mat. Fiz. Anal. Geom., 12:4 (2016), 338–358 | DOI | MR | Zbl
[2] D. Zakora, “A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem”, Zh. Mat. Fiz. Anal. Geom., 8:2 (2012), 190–206 | MR | Zbl
[3] A.S. Marcus, Introduction to Spectral Theory of Polinomial Operator Pencils, Shtiinca, Kishenev, 1986 (Russian) | MR
[4] J. Math. Sci. (N.Y.), 225:2 (2015), 345–380 | DOI | MR
[5] T.Ya. Azizov, I.S. Iohvidov, Basic Operator Theory in Spaces with Indefinite Metrics, Nauka, M., 1986 (Russian) | MR
[6] N.D. Kopachevsky, S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl