On properties of root elements in the problem on small motions of viscous relaxing fluid
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 402-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, the properties of root elements of the problem on small motions of a viscous relaxing fluid completely filling a bounded domain are studied. A multiple $p$-basis property of special system of elements is proven for the case where the system is in weightlessness. The solution of the evolution problem is expanded with respect to the corresponding system.
@article{JMAG_2017_13_a4,
     author = {D. Zakora},
     title = {On properties of root elements in the problem on small motions of viscous relaxing fluid},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {402--413},
     publisher = {mathdoc},
     volume = {13},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/}
}
TY  - JOUR
AU  - D. Zakora
TI  - On properties of root elements in the problem on small motions of viscous relaxing fluid
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 402
EP  - 413
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/
LA  - en
ID  - JMAG_2017_13_a4
ER  - 
%0 Journal Article
%A D. Zakora
%T On properties of root elements in the problem on small motions of viscous relaxing fluid
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 402-413
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/
%G en
%F JMAG_2017_13_a4
D. Zakora. On properties of root elements in the problem on small motions of viscous relaxing fluid. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 402-413. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a4/

[1] D. Zakora, “On the Spectrum of Rotating Viscous Relaxing Fluid”, Zh. Mat. Fiz. Anal. Geom., 12:4 (2016), 338–358 | DOI | MR | Zbl

[2] D. Zakora, “A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem”, Zh. Mat. Fiz. Anal. Geom., 8:2 (2012), 190–206 | MR | Zbl

[3] A.S. Marcus, Introduction to Spectral Theory of Polinomial Operator Pencils, Shtiinca, Kishenev, 1986 (Russian) | MR

[4] J. Math. Sci. (N.Y.), 225:2 (2015), 345–380 | DOI | MR

[5] T.Ya. Azizov, I.S. Iohvidov, Basic Operator Theory in Spaces with Indefinite Metrics, Nauka, M., 1986 (Russian) | MR

[6] N.D. Kopachevsky, S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl