Fluctuations of interlacing sequences
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 364-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a series of works published in the 1990s, Kerov put forth various applications of the circle of ideas centered at the Markov moment problem to the limiting shape of random continual diagrams arising in representation theory and spectral theory. We demonstrate on several examples that his approach is also adequate to study the fluctuations about the limiting shape. In the random matrix setting, we compare two continual diagrams: one is constructed from the eigenvalues of the matrix and the critical points of its characteristic polynomial, whereas the second one is constructed from the eigenvalues of the matrix and those of its principal submatrix. The fluctuations of the latter diagram were recently studied by Erdős and Schröder; we discuss the fluctuations of the former, and compare the two limiting processes. For Plancherel random partitions, the Markov correspondence establishes the equivalence between Kerov's central limit theorem for the Young diagram and the Ivanov–Olshanski central limit theorem for the transition measure. We outline a combinatorial proof of the latter, and compare the limiting process with the ones of random matrices.
@article{JMAG_2017_13_a3,
     author = {Sasha Sodin},
     title = {Fluctuations of interlacing sequences},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {364--401},
     publisher = {mathdoc},
     volume = {13},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a3/}
}
TY  - JOUR
AU  - Sasha Sodin
TI  - Fluctuations of interlacing sequences
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 364
EP  - 401
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a3/
LA  - en
ID  - JMAG_2017_13_a3
ER  - 
%0 Journal Article
%A Sasha Sodin
%T Fluctuations of interlacing sequences
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 364-401
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_a3/
%G en
%F JMAG_2017_13_a3
Sasha Sodin. Fluctuations of interlacing sequences. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 364-401. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a3/

[1] N. Achyèser, M. Krein, “Über Fouriersche Reihen Beschränkter Summierbarer Funktionen und ein Neues Extremumproblem I”, Commun. Soc. Math. Kharkoff et Inst. Sci. Math. et Mecan., Univ. Kharkoff, 4:9 (1934), 9–28 (German) | Zbl

[2] “Über Fouriersche Reihen Beschränkter Summierbarer Funktionen und ein Neues Extremumproblem II”, Commun. Soc. Math. Kharkoff et Inst. Sci. Math. et Mecan., Univ. Kharkoff, 4:10 (1934), 3–32 (German)

[3] “Das Momentenproblem bei der Zusätzlichen Bedingung von A. Markoff”, Commun. Soc. Math. Kharkoff et Inst. Sci. Math. et Mecan., Univ. Kharkoff, 4:12 (1935), 13–35 (German) | Zbl

[4] N. Achyèser, M. Krein, “Sur Deux Questions de Minima qui se Rattachent au Problème des Moments”, C. R. Acad. Sci. URSS, I (1936), 343–346 (French)

[5] v. 2, Amer. Math. Soc., Providence, R.I., 1962 | MR | Zbl

[6] G.W. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[7] G.W. Anderson, O. Zeitouni, “A CLT for a Band Matrix Model”, Probab. Theory Related Fields, 134:2 (2006), 283–338 | DOI | MR | Zbl

[8] Z.D. Bai, J. Yao, “On the Convergence of the Spectral Empirical Process of Wigner Matrices”, Bernoulli, 11:6 (2005), 1059–1092 | DOI | MR | Zbl

[9] H. Bass, “The Ihara–Selberg Zeta Function of a Tree Lattice”, Internat. J. Math., 3:6 (1992), 717–797 | DOI | MR | Zbl

[10] Ph. Biane, “Representations of Symmetric Groups and Free Probability”, Adv. Math., 138:1 (1998), 126–181 | DOI | MR | Zbl

[11] St. Petersburg Math. J., 4:5 (1993), 833–870 | MR | Zbl

[12] J. Breuer, “Spectral and Dynamical Properties of Certain Random Jacobi Matrices with Growing Parameters”, Trans. Amer. Math. Soc., 362:6 (2010), 3161–3182 | DOI | MR | Zbl

[13] J. Breuer, P.J. Forrester, U. Smilansky, “Random Discrete Schrödinger Operators from Random Matrix Theory”, J. Phys. A, 40:5 (2007), F161–F168 | DOI | MR | Zbl

[14] A. Bufetov, “Kerov's Interlacing Sequences and Random Matrices”, J. Math. Phys., 54:11 (2013), 113302, 10 pp. | DOI | MR | Zbl

[15] A. Bufetov, V. Gorin, Fluctuations of Particle Systems Determined by Schur Generating Functions arXiv:1604.01110, 64 pp.

[16] I. Dumitriu, A. Edelman, “Matrix Models for Beta Ensembles”, J. Math. Phys., 43:11 (2002), 5830–5847 | DOI | MR | Zbl

[17] E.M. Dyn'kin, “An Operator Calculus Based on the Cauchy–Green Formula, and the Quasianalyticity of the Classes $D(h)$”, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 19, 1970, 221–226 (Russian) | MR | Zbl

[18] E.M. Dyn'kin, “The Pseudoanalytic Extension”, J. Anal. Math., 60 (1993), 45–70 | DOI | MR | Zbl

[19] L. Erdős, D. Schröder, “Fluctuations of Rectangular Young Diagrams of Interlacing Wigner Eigenvalues”, Int. Math. Res. Not. IMRN, 2017 (to appear)

[20] L. Erdős, D. Schröder, “Fluctuations of Functions of Wigner Matrices”, Electron. Commun. Probab., 21 (2016), 86 | MR | Zbl

[21] O.N. Feldheim, S. Sodin, “A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance matrices”, Geom. Funct. Anal., 20:1 (2010), 88–123 | DOI | MR | Zbl

[22] V. Gorin, L. Zhang, Interlacing Adjacent Levels of $\beta$-Jacobi Corners Processes, 55 pp., arXiv: 1612.02321 [math.PR]

[23] B. Helffer, J. Sjöstrand, “Equation de Schrödinger avec Champ Magnétique et Equation de Harper”, Schrödinger operators (Sønderborg, 1988), Lecture Notes in Phys., 345, Springer, Berlin, 1989, 118–197 (French) | DOI | MR

[24] Y. Ihara, “On Discrete Subgroups of the Two by Two Projective Linear Group over $\mathfrak p$-adic Fields”, J. Math. Soc. Japan, 18 (1966), 219–235 | DOI | MR | Zbl

[25] V. Ivanov, G. Olshanski, “Kerov's Central Limit Theorem for the Plancherel Measure on Young Diagrams”, Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002, 93–151 | MR | Zbl

[26] I.-J. Jeong, S. Sodin, “A Limit Theorem for Stochastically Decaying Partitions at the Edge”, Random Matrices Theory Appl., 5:4 (2016), 1650016 | DOI | MR | Zbl

[27] K. Johansson, “On Fluctuations of Eigenvalues of Random Hermitian Matrices”, Duke Math. J., 91:1 (1998), 151–204 | DOI | MR | Zbl

[28] C.H. Joyner, U. Smilansky, “Spectral Statistics of Bernoulli Matrix Ensembles — a Random Walk Approach (I)”, J. Phys. A, 48:25 (2015), 255101 | DOI | MR | Zbl

[29] C.H. Joyner, U. Smilansky, A Random Walk Approach to Linear Statistics in Random Tournament Ensembles, preprint, 33 pp.

[30] Funct. Anal. Appl., 27:2 (1993), 104–117 | DOI | MR | Zbl

[31] St. Petersburg Math. J., 5:5 (1994), 925–941 | MR

[32] S. Kerov, “Gaussian Limit for the Plancherel Measure of the Symmetric Group”, C. R. Acad. Sci. Paris. Sér. I Math., 316:4 (1993), 303–308 | MR | Zbl

[33] S. Kerov, “Interlacing Measures”, Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, RI, 1998, 35–83 | MR | Zbl

[34] S.V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Translations of Mathematical Monographs, 219, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[35] A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, “Asymptotic Properties of Large Random Matrices with Independent Entries”, J. Math. Phys., 37:10 (1996), 5033–5060 | DOI | MR | Zbl

[36] M.G. Kreĭn, “On the Trace Formula in Perturbation Theory”, Mat. Sb., 33(75) (1953), 597–626 | MR | Zbl

[37] M.G. Kreĭn [Krein], A.A. Nudel'man, The Markov Moment Problem and Extremal Problems. Ideas and Problems of P.L. Čebyšev and A. A. Markov and Their Further Development, Translations of Mathematical Monographs, 50, Amer. Math. Soc., Providence, RI, 1977 | Zbl

[38] T. Kusalik, J. Mingo, R. Speicher, “Orthogonal Polynomials and Fluctuations of Random Matrices”, J. Reine Angew. Math., 604 (2007), 1–46 | DOI | MR | Zbl

[39] I.M. Lifšic [Lifshits], “On a Problem of the Theory of Perturbations Connected with Quantum Statistics”, Uspekhi Mat. Nauk, 7:1(47) (1952), 171–180 | MR | Zbl

[40] B.F. Logan, L.A. Shepp, “A Variational Problem for Random Young Tableaux”, Adv. Math., 26 (1977), 206–222 | DOI | MR | Zbl

[41] A. Lytova, L. Pastur, “Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices”, J. Stat. Phys., 134 (2009), 147–159 | DOI | MR | Zbl

[42] A. Lytova, L. Pastur, Non-Gaussian Limiting Laws for the Entries of Regular Functions of the Wigner Matrices, 28 pp., arXiv: 1103.2345 [math.PR]

[43] A. Markow, “Nouvelles Applications des Fractions Continues”, Math. Ann., 47 (1896), 579–597 | DOI | MR | Zbl

[44] P.L. Méliot, Kerov's Central Limit Theorem for Schur-Weyl Measures of Parameter 1/2, 23 pp., arXiv: 1009.4034 [math.RT]

[45] A. Moll, Random Partitions and the Quantum Benjamin-Ono Hierarchy, 127 pp., arXiv: 1508.03063 [math-ph] | MR

[46] A. Okounkov, “Random Matrices and Random Permutations”, Int. Math. Res. Not. IMRN, 20 (2000), 1043–1095 | DOI | MR | Zbl

[47] A. Okounkov, A. Vershik, “A New Approach to the Representation Theory of Symmetric Groups”, Selecta Math., 4 (1996), 581–605 | DOI | MR | Zbl

[48] I. Oren, A. Godel, U. Smilansky, “Trace Formulae and Spectral Statistics for Discrete Laplacians on Regular Graphs (I)”, J. Phys. A, 42:41 (2009), 415101 | DOI | MR | Zbl

[49] I. Oren, U. Smilansky, “Trace Formulas and Spectral Statistics for Discrete Laplacians on Regular Graphs (II)”, J. Phys. A, 43:22 (2010), 225205 | DOI | MR | Zbl

[50] I. Oren, U. Smilansky, “Periodic Walks on Large Regular Graphs and Random Matrix Theory”, Expo. Math., 23:4 (2014), 492–498 | DOI | MR | Zbl

[51] Russian Math. Surveys, 28:1 (1973), 1–67 | DOI | MR | MR | Zbl | Zbl

[52] L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, 171, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl

[53] A. Pizzo, D. Renfrew, A. Soshnikov, “Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices”, J. Stat. Phys., 146:3 (2012), 550–591 | DOI | MR | Zbl

[54] J. Schenker, H. Schulz-Baldes, “Gaussian Fluctuations for Random Matrices with Correlated Entries”, Int. Math. Res. Not. IMRN, 2007, no. 15, rnm047 | MR | Zbl

[55] M. Shcherbina, “Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and Sample Covariance Random Matrices”, Zh. Mat. Fiz. Anal. Geom., 7:2 (2011), 176–192 | MR | Zbl

[56] S. Sodin, Proceedings of ICM (2014, Seoul), 25 pp., arXiv: 1406.3410 [math.CA] | MR

[57] S. Sodin, “On the Critical Points of Random Matrix Characteristic Polynomials and of the Riemann $\xi$-Function”, Q. J. Math. (to appear) | MR

[58] P. Sosoe, P. Wong, “Regularity Conditions in the CLT for Linear Eigenvalue Statistics of Wigner Matrices”, Adv. Math., 249 (2013), 37–87 | DOI | MR | Zbl

[59] G. Szegő, Orthogonal Polynomials, American Mathematical Society, Colloquium Publications, XXIII, Amer. Math. Soc., Providence, RI, 1975 | MR

[60] Soviet Mathematics. Doklady, 18 (1977), 527–531 | MR | Zbl

[61] Funct. Anal. Appl., 19 (1985), 21–31 | DOI | MR | Zbl

[62] E.P. Wigner, “On the Distribution of the Roots of Certain Symmetric Matrices”, Ann. of Math. (2), 67 (1958), 325–327 | DOI | MR | Zbl

[63] P. Yuditskii On the $L_1$ Extremal Problem for Entire Functions, J. Approx. Theory, 179 (2014), 63–93 | DOI | MR | Zbl