On compact super quasi-Einstein warped product with nonpositive scalar curvature
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 353-363

Voir la notice de l'article provenant de la source Math-Net.Ru

This note deals with super quasi-Einstein warped product spaces. Here we establish that if $M$ is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then $M$ is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In the last section a warped product is defined on it.
@article{JMAG_2017_13_a2,
     author = {Sampa Pahan and Buddhadev Pal and Arindam Bhattacharyya},
     title = {On compact super {quasi-Einstein} warped product with nonpositive scalar curvature},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {353--363},
     publisher = {mathdoc},
     volume = {13},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/}
}
TY  - JOUR
AU  - Sampa Pahan
AU  - Buddhadev Pal
AU  - Arindam Bhattacharyya
TI  - On compact super quasi-Einstein warped product with nonpositive scalar curvature
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 353
EP  - 363
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/
LA  - en
ID  - JMAG_2017_13_a2
ER  - 
%0 Journal Article
%A Sampa Pahan
%A Buddhadev Pal
%A Arindam Bhattacharyya
%T On compact super quasi-Einstein warped product with nonpositive scalar curvature
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 353-363
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/
%G en
%F JMAG_2017_13_a2
Sampa Pahan; Buddhadev Pal; Arindam Bhattacharyya. On compact super quasi-Einstein warped product with nonpositive scalar curvature. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 353-363. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/