Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2017_13_a2, author = {Sampa Pahan and Buddhadev Pal and Arindam Bhattacharyya}, title = {On compact super {quasi-Einstein} warped product with nonpositive scalar curvature}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {353--363}, publisher = {mathdoc}, volume = {13}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/} }
TY - JOUR AU - Sampa Pahan AU - Buddhadev Pal AU - Arindam Bhattacharyya TI - On compact super quasi-Einstein warped product with nonpositive scalar curvature JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 353 EP - 363 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/ LA - en ID - JMAG_2017_13_a2 ER -
%0 Journal Article %A Sampa Pahan %A Buddhadev Pal %A Arindam Bhattacharyya %T On compact super quasi-Einstein warped product with nonpositive scalar curvature %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2017 %P 353-363 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/ %G en %F JMAG_2017_13_a2
Sampa Pahan; Buddhadev Pal; Arindam Bhattacharyya. On compact super quasi-Einstein warped product with nonpositive scalar curvature. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 353-363. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/
[1] A.L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | Zbl
[2] J.K. Beem, P. Ehrich, Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981 | MR | Zbl
[3] R.L. Bishop, B. O'Neill, “Geometry of Slant Submnaifolds”, Trans. Amer. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl
[4] M.C. Chaki, “On Super Quasi-Einstein Manifolds”, Publ. Math. Debrecen, 64 (2004), 481–488 | MR | Zbl
[5] M.C. Chaki, R.K. Maity, “On Quasi-Einstein Manifolds”, Publ. Math. Debrecen, 57 (2000), 297–306 | MR | Zbl
[6] D. Dumitru, “On Quasi-Einstein Warped Products”, Jordan J. Math. Stat., 5 (2012), 85–95 | Zbl
[7] M. Glogowska, “On Quasi-Einstein Cartan Type Hypersurfaces”, J. Geom. Phys., 58 (2008), 599–614 | DOI | MR | Zbl
[8] D. Kim, “Compact Einstein warped product spaces”, Trends Math. (ICMS), 5 (2002), 1–5
[9] D. Kim, Y. Kim, “Compact Einstein Warped Product Spaces with Nonpositive Scalar Curvature”, Proc. Amer. Math. Soc., 131, 2573–2576 | DOI | MR | Zbl
[10] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl
[11] C. Özgür, “On Some Classes of Super Quasi-Einstein Manifolds”, Chaos Solitons Fractals, 40 (2009), 1156–1161 | DOI | MR | Zbl
[12] B. Pal, A. Bhattacharyya, “A Characterization of Warped Product on Mixed Super Quasi-Einstein Manifold”, J. Dyn. Syst. Geom. Theor., 12 (2014), 29–39 | MR | Zbl