On compact super quasi-Einstein warped product with nonpositive scalar curvature
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 353-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note deals with super quasi-Einstein warped product spaces. Here we establish that if $M$ is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then $M$ is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In the last section a warped product is defined on it.
@article{JMAG_2017_13_a2,
     author = {Sampa Pahan and Buddhadev Pal and Arindam Bhattacharyya},
     title = {On compact super {quasi-Einstein} warped product with nonpositive scalar curvature},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {353--363},
     publisher = {mathdoc},
     volume = {13},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/}
}
TY  - JOUR
AU  - Sampa Pahan
AU  - Buddhadev Pal
AU  - Arindam Bhattacharyya
TI  - On compact super quasi-Einstein warped product with nonpositive scalar curvature
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2017
SP  - 353
EP  - 363
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/
LA  - en
ID  - JMAG_2017_13_a2
ER  - 
%0 Journal Article
%A Sampa Pahan
%A Buddhadev Pal
%A Arindam Bhattacharyya
%T On compact super quasi-Einstein warped product with nonpositive scalar curvature
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2017
%P 353-363
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/
%G en
%F JMAG_2017_13_a2
Sampa Pahan; Buddhadev Pal; Arindam Bhattacharyya. On compact super quasi-Einstein warped product with nonpositive scalar curvature. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 353-363. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a2/

[1] A.L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | Zbl

[2] J.K. Beem, P. Ehrich, Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981 | MR | Zbl

[3] R.L. Bishop, B. O'Neill, “Geometry of Slant Submnaifolds”, Trans. Amer. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl

[4] M.C. Chaki, “On Super Quasi-Einstein Manifolds”, Publ. Math. Debrecen, 64 (2004), 481–488 | MR | Zbl

[5] M.C. Chaki, R.K. Maity, “On Quasi-Einstein Manifolds”, Publ. Math. Debrecen, 57 (2000), 297–306 | MR | Zbl

[6] D. Dumitru, “On Quasi-Einstein Warped Products”, Jordan J. Math. Stat., 5 (2012), 85–95 | Zbl

[7] M. Glogowska, “On Quasi-Einstein Cartan Type Hypersurfaces”, J. Geom. Phys., 58 (2008), 599–614 | DOI | MR | Zbl

[8] D. Kim, “Compact Einstein warped product spaces”, Trends Math. (ICMS), 5 (2002), 1–5

[9] D. Kim, Y. Kim, “Compact Einstein Warped Product Spaces with Nonpositive Scalar Curvature”, Proc. Amer. Math. Soc., 131, 2573–2576 | DOI | MR | Zbl

[10] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl

[11] C. Özgür, “On Some Classes of Super Quasi-Einstein Manifolds”, Chaos Solitons Fractals, 40 (2009), 1156–1161 | DOI | MR | Zbl

[12] B. Pal, A. Bhattacharyya, “A Characterization of Warped Product on Mixed Super Quasi-Einstein Manifold”, J. Dyn. Syst. Geom. Theor., 12 (2014), 29–39 | MR | Zbl