Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2017_13_a0, author = {K. Andreiev and I. Egorova}, title = {On the long-time asymptotics for the {Korteweg{\textendash}de} {Vries} equation with steplike initial data associated with rarefaction waves}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {325--343}, publisher = {mathdoc}, volume = {13}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2017_13_a0/} }
TY - JOUR AU - K. Andreiev AU - I. Egorova TI - On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2017 SP - 325 EP - 343 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2017_13_a0/ LA - en ID - JMAG_2017_13_a0 ER -
%0 Journal Article %A K. Andreiev %A I. Egorova %T On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2017 %P 325-343 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2017_13_a0/ %G en %F JMAG_2017_13_a0
K. Andreiev; I. Egorova. On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 13 (2017), pp. 325-343. http://geodesic.mathdoc.fr/item/JMAG_2017_13_a0/
[1] K. Andreiev, I. Egorova, T.-L. Lange, G. Teschl, “Rarefaction Waves of the Korteweg–de Vries Equation via Nonlinear Steepest Descent”, J. Differential Equations, 261 (2016), 5371–5410 | DOI | MR | Zbl
[2] K. Andreiev, I. Egorova, “Uniqueness of the Solution of the Riemann–Hilbert Problem for the Rarefaction Wave of the Korteweg–de Vries Equation”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2017, no. 11, 3–9 | DOI
[3] R. Beals, P. Deift, C. Tomei, Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, 28, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl
[4] V.S. Buslaev, V.N. Fomin, “An Inverse Scattering Problem for One-Dimentional Schrödinger Equation on the Entire Axis”, Vestnik Leningrad. Univ., 17 (1962), 56–64 (Russian) | MR | Zbl
[5] A. Cohen, T. Kappeler, “Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation”, Indiana Univ. Math. J., 34 (1985), 127–180 | DOI | MR | Zbl
[6] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems”, Ann. of Math., 137 (1993), 295–368 | DOI | MR | Zbl
[7] I. Egorova, Z. Gladka, T.-L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, Zh. Mat. Fiz. Anal. Geom., 11 (2015), 123–158 | DOI | MR | Zbl
[8] I. Egorova, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data II. Perturbations with Finite Moments”, J. Anal. Math., 115 (2011), 71–101 | DOI | MR | Zbl
[9] K. Grunert, G. Teschl, “Long-Time Asymptotics for the Korteweg–de Vries Equation via Nonlinear Steepest Descent”, Math. Phys. Anal. Geom., 12 (2009), 287–324 | DOI | MR | Zbl
[10] A.V. Gurevich, L.P. Pitaevskii, “Decay of Initial Discontinuity in the Korteweg–de Vries Equation”, JETP Lett., 17:5 (1973), 193–195
[11] E.Ya. Khruslov, “Asymptotics of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data of Step Type”, Mat. Sb. (N.S.), 99 (141):2 (1976), 261–281 (Russian) | MR | Zbl
[12] J.A. Leach, D.J. Needham, “The Large-Time Development of the Solution to an Initial-Value Problem for the Korteweg–de Vries Equation: I. Initial Data Has a Discontinuous Expansive Step,”, Nonlinearity, 21 (2008), 2391–2408 | DOI | MR | Zbl
[13] J. Lenells, The Nonlinear Steepest Descent Method for Riemann–Hilbert Problems of Low Regularity, 35 pp., arXiv: 1501.05329 [nlin.SI] | MR
[14] G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, Graduate Studies in Mathematics, 99, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[15] V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, Theory of Solitons. The Method of the Inverse Problem, Nauka, M., 1980 (Russian) | MR | Zbl