On the spectrum of rotating viscous relaxing fluid
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 338-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, a problem on the spectrum of a viscous relaxing fluid completely filling a rotating bounded domain is formulated. The essential spectrum of the problem is obtained and the statements on the localization and a spectrum asymptotics are proven.
@article{JMAG_2016_12_a3,
     author = {D. Zakora},
     title = {On the spectrum of rotating viscous relaxing fluid},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {338--358},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/}
}
TY  - JOUR
AU  - D. Zakora
TI  - On the spectrum of rotating viscous relaxing fluid
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 338
EP  - 358
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/
LA  - en
ID  - JMAG_2016_12_a3
ER  - 
%0 Journal Article
%A D. Zakora
%T On the spectrum of rotating viscous relaxing fluid
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 338-358
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/
%G en
%F JMAG_2016_12_a3
D. Zakora. On the spectrum of rotating viscous relaxing fluid. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 338-358. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/

[1] P. K. Pal, V. N. Maslennikova, “Spectral Properties of Operators in a Problem on Normal Oscillations of a Compressible Fluid Filling Rotating Vesse”, Acad. Sci. USSR, 281:3 (1985), 529–534 (Russian) | MR | Zbl

[2] G. Geymonat, E. Sanchez-Palencia, “On the Vanishing Viscosity Limit for Acoustic Phenomena in a Bounded Region”, Archiv for Rat. Mech. and Anal., 75 (1981), 257–268 | DOI | MR | Zbl

[3] V. V. Vlasov, D. A. Medvedev, “Functional-Differentional Equations in Sobolev Spaces and Connected Questions on Spectral Theory”, Modern Math. Fundamental Concepts, 30 (2008), 3–173 (Russian) | MR

[4] V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Spectral Analysis and Well-Posed Solvability of Abstract Integro-Differential Equations Arising in Thermal Physics and Acoustics”, Modern Math. Fundamental Concepts, 39 (2011), 36–65 (Russian)

[5] D. Zakora, “A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem”, J. Math. Phys., Anal., Geom., 8:2 (2012), 190–206 | MR | Zbl

[6] N. D. Kopachevsky, S. G. Krein, Ngo Zui Kan, Operator Methods in Linear Hydrodynamics. Evolution and Spectral Problems, Nauka, M., 1989 (Russian)

[7] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | Zbl

[8] L. R. Volevich, “Solvability of Boundary-Value Problems for General Elliptic Systems”, Math. Sb., 68(110):3 (1965), 373–416 (Russian) | MR | Zbl

[9] V. A. Solonnikov, “On General Boundary-Value Problems for A. Douglis–L. Nirenberg Elliptic Systems. II”, Trudy Math. V.A. Steklov Ins., 1966, 233–297 (Russian) | MR | Zbl

[10] A. N. Kozhevnikov, Functional Methods of Mathematical Physics, Uchebnoe Posobie, MAI, M., 1991 (Russian)

[11] A. Kozhevnikov, T. Skubachevskaya, “Some Applications of Pseudo-Differential Operators to Elasticity”, Hokkaido Mathematical Journal, 26 (1997), 297–322 | DOI | MR | Zbl

[12] G. Grubb, G. Geymonat, “The Essential Spectrum of Elliptic Systems of Mixed Order”, Math. Ann., 227 (1977), 247–276 | DOI | MR | Zbl

[13] A. S. Marcus, Introduction to Spectral Theory of Polinomial Operator Pencils, Shtiinca, Kishenev, 1986 (Russian)

[14] A. S. Marcus, V. I. Matsaev, “Theorem on Compare of Spectrums and Spectral Asymptotics for M. V. Keldysh's Pencil”, Math. Sb., 123(165):3 (1984), 391–406 (Russian) | MR

[15] M. Sh. Birman, M. Z. Solomjak, “Asymptotics of Spectrum of Differential Equations”, Itogi Nauki i Tehniki VINITI. Seria Math. An., 14, 1977, 5–58 (Russian) | MR | Zbl

[16] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl