On the spectrum of rotating viscous relaxing fluid
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 338-358

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, a problem on the spectrum of a viscous relaxing fluid completely filling a rotating bounded domain is formulated. The essential spectrum of the problem is obtained and the statements on the localization and a spectrum asymptotics are proven.
@article{JMAG_2016_12_a3,
     author = {D. Zakora},
     title = {On the spectrum of rotating viscous relaxing fluid},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {338--358},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/}
}
TY  - JOUR
AU  - D. Zakora
TI  - On the spectrum of rotating viscous relaxing fluid
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 338
EP  - 358
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/
LA  - en
ID  - JMAG_2016_12_a3
ER  - 
%0 Journal Article
%A D. Zakora
%T On the spectrum of rotating viscous relaxing fluid
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 338-358
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/
%G en
%F JMAG_2016_12_a3
D. Zakora. On the spectrum of rotating viscous relaxing fluid. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 338-358. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a3/