On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 315-337

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine pseudo-Riemannian submanifolds of a pseudo-hyperbolic space $\mathbb H^{m-1}_s (-1) \subset \mathbb E^m_{s+1}$ with finite type pseudo-hyperbolic Gauss map. We begin by providing a characterization of pseudo-Riemannian submanifolds in $\mathbb H^{m-1}_s (-1)$ with 1-type pseudo-hyperbolic Gauss map, and we obtain the classification of maximal surfaces in $\mathbb H^{m-1}_2 (-1) \subset \mathbb E^m_{3}$ with 1-type pseudo-hyperbolic Gauss map. Then we investigate the submanifolds of $\mathbb H^{m-1}_s (-1)$ with 1-type pseudo-hyperbolic Gauss map containing nonzero constant component in its spectral decomposition.
@article{JMAG_2016_12_a2,
     author = {R. Ye\u{g}in and U. Dursun},
     title = {On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic {Gauss} map},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {315--337},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/}
}
TY  - JOUR
AU  - R. Yeğin
AU  - U. Dursun
TI  - On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 315
EP  - 337
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/
LA  - en
ID  - JMAG_2016_12_a2
ER  - 
%0 Journal Article
%A R. Yeğin
%A U. Dursun
%T On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 315-337
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/
%G en
%F JMAG_2016_12_a2
R. Yeğin; U. Dursun. On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 315-337. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/