On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 315-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine pseudo-Riemannian submanifolds of a pseudo-hyperbolic space $\mathbb H^{m-1}_s (-1) \subset \mathbb E^m_{s+1}$ with finite type pseudo-hyperbolic Gauss map. We begin by providing a characterization of pseudo-Riemannian submanifolds in $\mathbb H^{m-1}_s (-1)$ with 1-type pseudo-hyperbolic Gauss map, and we obtain the classification of maximal surfaces in $\mathbb H^{m-1}_2 (-1) \subset \mathbb E^m_{3}$ with 1-type pseudo-hyperbolic Gauss map. Then we investigate the submanifolds of $\mathbb H^{m-1}_s (-1)$ with 1-type pseudo-hyperbolic Gauss map containing nonzero constant component in its spectral decomposition.
@article{JMAG_2016_12_a2,
     author = {R. Ye\u{g}in and U. Dursun},
     title = {On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic {Gauss} map},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {315--337},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/}
}
TY  - JOUR
AU  - R. Yeğin
AU  - U. Dursun
TI  - On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 315
EP  - 337
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/
LA  - en
ID  - JMAG_2016_12_a2
ER  - 
%0 Journal Article
%A R. Yeğin
%A U. Dursun
%T On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 315-337
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/
%G en
%F JMAG_2016_12_a2
R. Yeğin; U. Dursun. On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 315-337. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a2/

[1] N. Abe, N. Koike, S. Yamaguchi, “Congruence Theorems for Proper Semi-Riemannian Hypersurfaces in a Real Space Form”, Yokohama Math. J., 35 (1987), 123–136 | MR | Zbl

[2] L. Zhen-qi, X. Xian-hua, “Space-like Isoparametric Hypersurfaces in Lorentzian Space Forms”, Front. Math. China, 1 (2006), 130–137 | DOI | MR | Zbl

[3] B.-Y. Chen, “Finite Type Submanifolds in Pseudo-Euclidean Spaces and Applications”, Kodai Math. J., 8 (1985), 358–374 | DOI | MR | Zbl

[4] B.-Y. Chen, “Finite Type Pseudo-Riemannian Submanifolds”, Tamkang Math. J., 17 (1986), 137–151 | MR | Zbl

[5] B.-Y. Chen, “Submanifolds of Finite Type in Hyperbolic Spaces”, Chinese J. Math., 20 (1992), 5–21 | MR | Zbl

[6] B.-Y. Chen, “A Report on Submanifolds of Finite Type”, Soochow J. Math., 22 (1996), 117–337 | MR | Zbl

[7] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, 2nd edition, World Scientific, 2015 | MR | Zbl

[8] B.-Y. Chen, P. Piccinni, “Submanifolds with Finite Type Gauss Map”, Bull. Aust. Math. Soc., 35 (1987), 161–186 | DOI | MR | Zbl

[9] B.-Y. Chen, H.-S. Lue, “Spherical Submanifolds with Finite Type Spherical Gauss Map”, J. Korean Math. Soc., 44 (2007), 407–442 | DOI | MR | Zbl

[10] B.-Y. Chen, J. V. Veken, “Classification of Marginally Trapped Surfaces with Parallel Mean Curvature Vector in Lorentzian Space Forms”, Houston J. Math., 36 (2010), 421–449 | MR | Zbl

[11] Q.-M. Cheng, “Space-like Surfaces in an Anti-de Sitter Space”, Colloq. Math., LXVI:2 (1993), 201–208 | MR

[12] U. Dursun, “Hypersurfaces of Hyperbolic Space with 1-type Gauss Map”, The International Conference Differential Geometry and Dynamical Systems (DGDS-2010), BSG Proc., 18, 2011, 47–55 | MR | Zbl

[13] U. Dursun, R. Yeǧin, “Hyperbolic Submanifolds with Finite Type Hyperbolic Gauss Map”, Internat. J. Math., 26 (2015), 1550014, 18 pp. | DOI | MR | Zbl

[14] U. Dursun, B. Bektaş, “On Spherical Submanifolds with Finite Type Spherical Gauss Map”, Adv. Geom., 16:2 (2016), 243251 | MR

[15] T. Ishihara, “The Harmonic Gauss Map in a Generalized Sense”, J. London Math. Soc. (2), 26 (1982), 104–112 | DOI | MR | Zbl

[16] T. Ishihara, “Maximal Spacelike Submanifolds of a Pseudo-Riemannian Space of Constant Curvature”, Michigan Math. J., 35 (1988), 345–352 | DOI | MR | Zbl

[17] Y.H. Kim, D. W. Yoon, “Classifications of Rotation Surfaces in Pseudo-Euclidean Space”, J. Korean Math. Soc., 41 (2004), 379–396 | DOI | MR | Zbl

[18] P. Lucas, H.-F. Ramírez-Ospina, “Hypersurfaces in Non-Flat Pseudo-Riemannian Space Forms Satisfying a Linear Condition in the Linearized Operator of a Higher Order Mean Curvature”, Taiwanese J. Math., 17:1 (2013), 15–45 | DOI | MR | Zbl

[19] M. Obata, “The Gauss Map of Immersions of Riemannian Manifolds in Spaces of Constant Curvature”, J. Differential Geom., 2 (1968), 217–223 | MR | Zbl

[20] M. Sakaki, “Spacelike Maximal Surfaces in 4-dimensional Space Forms of Index 2”, Tokyo J. Math., 25 (2002), 295–306 | DOI | MR | Zbl