On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 302-314

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the $q$-state (where $q=3,4,5,\dots$) Potts model with special external field on a Cayley tree of order $k\geq 2$. For antiferromagnetic Potts model with such an external field on the Cayley tree of order $k\geq 6$, the non-uniqueness of weakly periodic (non-periodic) Gibbs measures is proved. The weakly periodic Gibbs measures for the Potts model with zero external field are also studied. It is proved that under some conditions imposed on the parameters of the model there can be not less than $2^q-2$ such measures.
@article{JMAG_2016_12_a1,
     author = {M. M. Rahmatullaev},
     title = {On weakly periodic {Gibbs} measures of the {Potts} model with a special external field on a {Cayley} tree},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {302--314},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/}
}
TY  - JOUR
AU  - M. M. Rahmatullaev
TI  - On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 302
EP  - 314
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/
LA  - en
ID  - JMAG_2016_12_a1
ER  - 
%0 Journal Article
%A M. M. Rahmatullaev
%T On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 302-314
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/
%G en
%F JMAG_2016_12_a1
M. M. Rahmatullaev. On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 302-314. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/