On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 302-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the $q$-state (where $q=3,4,5,\dots$) Potts model with special external field on a Cayley tree of order $k\geq 2$. For antiferromagnetic Potts model with such an external field on the Cayley tree of order $k\geq 6$, the non-uniqueness of weakly periodic (non-periodic) Gibbs measures is proved. The weakly periodic Gibbs measures for the Potts model with zero external field are also studied. It is proved that under some conditions imposed on the parameters of the model there can be not less than $2^q-2$ such measures.
@article{JMAG_2016_12_a1,
     author = {M. M. Rahmatullaev},
     title = {On weakly periodic {Gibbs} measures of the {Potts} model with a special external field on a {Cayley} tree},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {302--314},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/}
}
TY  - JOUR
AU  - M. M. Rahmatullaev
TI  - On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 302
EP  - 314
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/
LA  - en
ID  - JMAG_2016_12_a1
ER  - 
%0 Journal Article
%A M. M. Rahmatullaev
%T On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 302-314
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/
%G en
%F JMAG_2016_12_a1
M. M. Rahmatullaev. On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 302-314. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a1/

[1] H. O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, Berlin, 1988 | MR | Zbl

[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[3] Intl. Series Nat. Philos., 108, Pergamon Press, Oxford, 1982 | MR | Zbl

[4] U. A. Rozikov, Gibbs measures on Cayley trees, World scientific, 2013 | MR | Zbl

[5] N. N. Ganikhodzhaev, “Pure Phases of the Ferromagnetic Potts Model with Three States on a Second-Order Bethe Lattice”, Theor. Math. Phys., 85:2 (1990), 1125–1134 | DOI | MR

[6] N. N. Ganikhodzhaev, “Pure Phases of the Ferromagnetic Potts Model on the Bethe Lattice”, Dokl. AN RUz, 67 (1992), 4–7

[7] N. N. Ganikhodzhaev, U. A. Rozikov, “Description of Periodic Extreme Gibbs Measures of Some Lattice Models on the Cayley Tree”, Theor. Math. Phys., 111:1 (1992), 480–486 | DOI | MR

[8] N. N. Ganikhodzhaev, U. A. Rozikov, “The Potts Model with Countable Set of Spin Values on a Cayley Tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR

[9] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of Translation-Invariant Splitting Gibbs Measures for the Potts Model on a Cayley Tree”, Jour. Stat. Phys., 156:1 (2014), 189–200 | DOI | MR | Zbl

[10] U. A. Rozikov, N. N. Ganikhodzhaev, “On Weak Periodic Gibbs Measures of Ising Model on Cayley Trees”, Theor. Math. Phys., 156:2 (2008), 1218–1227 | DOI | MR | Zbl

[11] U. A. Rozikov, M. M. Rakhmatullaev, “Weakly Periodic Ground States and Gibbs Measures for the Ising Model with Competing Interactions on the Cayley Tree”, Theor. Math. Phys., 160:3 (2009), 1292–1300 | DOI | MR | Zbl

[12] M. M. Rakhmatullaev, “Weakly Periodic Gibbs Measures and Ground States for the Potts Model with Competing Inter-Actions on the Cayley Tree”, Theor. Math. Phys., 176:3 (2013), 1236–1251 | DOI | MR | Zbl

[13] M. M. Rakhmatullaev, “The Existence of Weakly Periodic Gibbs Measures for the Potts Model on a Cayley Tree”, Theor. Math. Phys., 180:3 (2014), 1019–1029 | DOI | MR

[14] N. N. Ganikhodjaev, U. A. Rozikov, “Group Representation of the Cayley Forest and Some of its Applications”, Izvestiya: Math., 67:1 (2003), 17–27 | DOI | MR

[15] N. N. Ganikhodjaev, “Group Representations and Automorphisms of a Cayley Tree”, Dokl. AN RUz, 4 (1994), 3–5

[16] H. Kesten, “Quadratic Transformations: a Model for Population Growth. I”, Adv. Appl. Probab., 2 (1970), 1–82 | DOI | MR | Zbl