The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 287-301

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a boundary version of the Carathéodory inequality is studied. For the function $f(z)$, defined in the unit disc with $f(0)=0$, $\Re f(z)\leq A$, we estimate a modulus of angular derivative at the boundary point $z_{0}$, $\Re f(z_{0})=A$, by taking into account the first two nonzero Maclaurin coefficients. The sharpness of these estimates is also proved.
@article{JMAG_2016_12_a0,
     author = {B. N. \"Ornek},
     title = {The {Carath\'{e}odory} inequality on the boundary for holomorphic functions in the unit disc},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {287--301},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/}
}
TY  - JOUR
AU  - B. N. Örnek
TI  - The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 287
EP  - 301
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/
LA  - en
ID  - JMAG_2016_12_a0
ER  - 
%0 Journal Article
%A B. N. Örnek
%T The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 287-301
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/
%G en
%F JMAG_2016_12_a0
B. N. Örnek. The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 287-301. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/