The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 287-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a boundary version of the Carathéodory inequality is studied. For the function $f(z)$, defined in the unit disc with $f(0)=0$, $\Re f(z)\leq A$, we estimate a modulus of angular derivative at the boundary point $z_{0}$, $\Re f(z_{0})=A$, by taking into account the first two nonzero Maclaurin coefficients. The sharpness of these estimates is also proved.
@article{JMAG_2016_12_a0,
     author = {B. N. \"Ornek},
     title = {The {Carath\'{e}odory} inequality on the boundary for holomorphic functions in the unit disc},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {287--301},
     publisher = {mathdoc},
     volume = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/}
}
TY  - JOUR
AU  - B. N. Örnek
TI  - The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2016
SP  - 287
EP  - 301
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/
LA  - en
ID  - JMAG_2016_12_a0
ER  - 
%0 Journal Article
%A B. N. Örnek
%T The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2016
%P 287-301
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/
%G en
%F JMAG_2016_12_a0
B. N. Örnek. The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 287-301. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/

[1] H.P. Boas, “Julius and Julia: Mastering the art of the Schwarz lemma”, American Mathematical Monthly, 117:9 (2010), 770–785 | DOI | MR | Zbl

[2] D.M. Burns, S.G. Krantz, “Rigidity of Holomorphic Mappings and a New Schwarz Lemma at the Boundary”, J. Amer. Math. Soc., 7 (1994), 661–676 | DOI | MR | Zbl

[3] C. Carathéodory, Theory of Functions, v. 2, Chelsea, New York, 1954

[4] V.N. Dubinin, “The Schwarz Inequality on the Boundary for Functions Regular in the Disc”, J. Math. Sci., 122:2 (2004), 3623–3629 | DOI | MR

[5] G.M. Golusin, Geometric Theory of Functions of Complex Variable, 2nd edn., M., 1966 (Russian)

[6] G. Kresin, V. Maz'ya, Sharp real-part theorems. A unified approach, Translated from Russian and edited by T. Shaposhnikova, Lecture Notes in Mathematics, Springer, Berlin, 1903, 2007 pp. | MR

[7] R. Osserman, “A Sharp Schwarz Inequality on the Boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513–3517 | DOI | MR | Zbl

[8] B.N. Örnek, “A Sharp Schwarz and Carathéodory Inequality on the Boundary”, Commun. Korean Math. Soc., 29:1 (2014), 75–81 | DOI | MR | Zbl

[9] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR | Zbl