Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2016_12_a0, author = {B. N. \"Ornek}, title = {The {Carath\'{e}odory} inequality on the boundary for holomorphic functions in the unit disc}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {287--301}, publisher = {mathdoc}, volume = {12}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/} }
TY - JOUR AU - B. N. Örnek TI - The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2016 SP - 287 EP - 301 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/ LA - en ID - JMAG_2016_12_a0 ER -
B. N. Örnek. The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2016), pp. 287-301. http://geodesic.mathdoc.fr/item/JMAG_2016_12_a0/
[1] H.P. Boas, “Julius and Julia: Mastering the art of the Schwarz lemma”, American Mathematical Monthly, 117:9 (2010), 770–785 | DOI | MR | Zbl
[2] D.M. Burns, S.G. Krantz, “Rigidity of Holomorphic Mappings and a New Schwarz Lemma at the Boundary”, J. Amer. Math. Soc., 7 (1994), 661–676 | DOI | MR | Zbl
[3] C. Carathéodory, Theory of Functions, v. 2, Chelsea, New York, 1954
[4] V.N. Dubinin, “The Schwarz Inequality on the Boundary for Functions Regular in the Disc”, J. Math. Sci., 122:2 (2004), 3623–3629 | DOI | MR
[5] G.M. Golusin, Geometric Theory of Functions of Complex Variable, 2nd edn., M., 1966 (Russian)
[6] G. Kresin, V. Maz'ya, Sharp real-part theorems. A unified approach, Translated from Russian and edited by T. Shaposhnikova, Lecture Notes in Mathematics, Springer, Berlin, 1903, 2007 pp. | MR
[7] R. Osserman, “A Sharp Schwarz Inequality on the Boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513–3517 | DOI | MR | Zbl
[8] B.N. Örnek, “A Sharp Schwarz and Carathéodory Inequality on the Boundary”, Commun. Korean Math. Soc., 29:1 (2014), 75–81 | DOI | MR | Zbl
[9] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR | Zbl