Algebro-geometric solutions to a new hierarchy of soliton equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 359-398
Voir la notice de l'article provenant de la source Math-Net.Ru
With the help of the Lenard recursion equations, we derive a new hierarchy of soliton equations associated with a $3\times3$ matrix spectral problem and establish Dubrovin type equations in terms of the introduced trigonal curve $\mathcal{K}_{m-1}$ of arithmetic genus $m-1$. Basing on the theory of algebraic curve, we construct the corresponding Baker–Akhiezer functions and meromorphic functions on $\mathcal{K}_{m-1}$. The known zeros and poles for the Baker–Akhiezer function and meromorphic functions allow us to find their theta function representations, from which algebro-geometric constructions and theta function representations of the entire hierarchy of soliton equations are obtained.
@article{JMAG_2015_11_a2,
author = {Hui Wang and Xianguo Geng},
title = {Algebro-geometric solutions to a new hierarchy of soliton equations},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {359--398},
publisher = {mathdoc},
volume = {11},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/}
}
TY - JOUR AU - Hui Wang AU - Xianguo Geng TI - Algebro-geometric solutions to a new hierarchy of soliton equations JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2015 SP - 359 EP - 398 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/ LA - en ID - JMAG_2015_11_a2 ER -
Hui Wang; Xianguo Geng. Algebro-geometric solutions to a new hierarchy of soliton equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 359-398. http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/