Algebro-geometric solutions to a new hierarchy of soliton equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 359-398

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of the Lenard recursion equations, we derive a new hierarchy of soliton equations associated with a $3\times3$ matrix spectral problem and establish Dubrovin type equations in terms of the introduced trigonal curve $\mathcal{K}_{m-1}$ of arithmetic genus $m-1$. Basing on the theory of algebraic curve, we construct the corresponding Baker–Akhiezer functions and meromorphic functions on $\mathcal{K}_{m-1}$. The known zeros and poles for the Baker–Akhiezer function and meromorphic functions allow us to find their theta function representations, from which algebro-geometric constructions and theta function representations of the entire hierarchy of soliton equations are obtained.
@article{JMAG_2015_11_a2,
     author = {Hui Wang and Xianguo Geng},
     title = {Algebro-geometric solutions to a new hierarchy of soliton equations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {359--398},
     publisher = {mathdoc},
     volume = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/}
}
TY  - JOUR
AU  - Hui Wang
AU  - Xianguo Geng
TI  - Algebro-geometric solutions to a new hierarchy of soliton equations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 359
EP  - 398
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/
LA  - en
ID  - JMAG_2015_11_a2
ER  - 
%0 Journal Article
%A Hui Wang
%A Xianguo Geng
%T Algebro-geometric solutions to a new hierarchy of soliton equations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 359-398
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/
%G en
%F JMAG_2015_11_a2
Hui Wang; Xianguo Geng. Algebro-geometric solutions to a new hierarchy of soliton equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 359-398. http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/