Algebro-geometric solutions to a new hierarchy of soliton equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 359-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of the Lenard recursion equations, we derive a new hierarchy of soliton equations associated with a $3\times3$ matrix spectral problem and establish Dubrovin type equations in terms of the introduced trigonal curve $\mathcal{K}_{m-1}$ of arithmetic genus $m-1$. Basing on the theory of algebraic curve, we construct the corresponding Baker–Akhiezer functions and meromorphic functions on $\mathcal{K}_{m-1}$. The known zeros and poles for the Baker–Akhiezer function and meromorphic functions allow us to find their theta function representations, from which algebro-geometric constructions and theta function representations of the entire hierarchy of soliton equations are obtained.
@article{JMAG_2015_11_a2,
     author = {Hui Wang and Xianguo Geng},
     title = {Algebro-geometric solutions to a new hierarchy of soliton equations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {359--398},
     publisher = {mathdoc},
     volume = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/}
}
TY  - JOUR
AU  - Hui Wang
AU  - Xianguo Geng
TI  - Algebro-geometric solutions to a new hierarchy of soliton equations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 359
EP  - 398
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/
LA  - en
ID  - JMAG_2015_11_a2
ER  - 
%0 Journal Article
%A Hui Wang
%A Xianguo Geng
%T Algebro-geometric solutions to a new hierarchy of soliton equations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 359-398
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/
%G en
%F JMAG_2015_11_a2
Hui Wang; Xianguo Geng. Algebro-geometric solutions to a new hierarchy of soliton equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 359-398. http://geodesic.mathdoc.fr/item/JMAG_2015_11_a2/

[1] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, PA, 1981 | MR | Zbl

[2] D. E. Belokolos, I. A. Bobenko, Z. V. Enol'skii, R. A. Its, B. V. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994 | Zbl

[3] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[4] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[5] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of Solitons, the Inverse Scattering Methods, Consultants Bureau, New York, 1984 | MR

[6] I. M. Krichever, “An Algebraic-Geometric Construction of the Zaharov–Shabat Equation and Their Periodic Solutions”, Dokl. Akad. Nauk SSSR, 227 (1976), 291–294 | MR | Zbl

[7] B. A. Dubrovin, “Theta Functions and Nonlinear Equations”, Russian Math. Surveys, 36 (1981), 11–80 | DOI | MR | Zbl

[8] B. A. Dubrovin, “Matrix Finite-Gap Operators”, J. Math. Sci., 28 (1985), 20–50 | DOI | Zbl

[9] E. Date, S. Tanaka, “Periodic Multi-Soliton Solutions of Korteweg–de Vries Equation and Toda Lattice”, Progr. Theor. Phys. Suppl., 59 (1976), 107–125 | DOI | MR

[10] Y. C. Ma, M. J. Ablowitz, “The Periodic Cubic Schrödinger Equation”, Stud. Appl. Math., 65 (1981), 113–158 | DOI | MR | Zbl

[11] A. O. Smirnov, “Real Finite-Gap Regular Solutions of the Kaup–Boussinesq Equation”, Theor. Math. Phys., 66 (1986), 19–31 | DOI | MR | Zbl

[12] F. Gesztesy, H. Holden, “Algebro-Geometric Solutions of the Camassa–Holm Hierarchy”, Rev. Mat. Iberoam., 19 (2003), 73–142 | DOI | MR | Zbl

[13] C. W. Cao, Y. T. Wu, X. G. Geng, “Relation Between the Kadometsev–Petviashvili Equation and the Confocal Involutive System”, J. Math. Phys., 40 (1999), 3948–3970 | DOI | MR | Zbl

[14] X. G. Geng, C. W. Cao, “Decomposition of the $(2+1)$-dimensional Gardner Equation and its Quasi-Periodic Solutions”, Nonlinearity, 14 (2001), 1433–1452 | DOI | MR | Zbl

[15] X. G. Geng, H. H. Dai, J. Y. Zhu, “Decomposition of the Discrete Ablowitz–Ladik Hierarchy”, Stud. Appl. Math., 118 (2007), 281–312 | MR

[16] V. B. Matveev, A. O. Smirnov, “On the Riemann Theta Function of a Trigonal Curve and Solutions of the Boussinesq and KP Equations”, Lett. Math. Phys., 14 (1987), 25–31 | DOI | MR | Zbl

[17] V. B. Matveev, A. O. Smirnov, “Simplest Trigonal Solutions of the Boussinesq and Kadomtsev–Petviashvili Equations”, Sov. Phys. Dokl., 32 (1987), 202–204 | MR | Zbl

[18] S. Baldwin, J. C. Eilbeck, J. Gibbons, Y. Ônishi, “Abelian Functions for Cyclic Trigonal Curves of Genus 4”, J. Geom. Phys., 58 (2008), 450–467 | DOI | MR | Zbl

[19] J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Ônishi, E. Previato, “Abelian Functions for Trigonal Curves of Genus Three”, Int. Math. Res. Not., 2007 (2007), rnm 140, 38 pp. | MR

[20] Y. V. Brezhnev, “Finite-Band Potentials with Trigonal Curves”, Theor. Math. Phys., 133 (2002), 1657–1662 | DOI | MR | Zbl

[21] V. B. Matveev, A. O. Smirnov, “Symmetric Reductions of the Riemann-Function and Some of Their Applications to the Schrödinger and Boussinesq Equations”, Amer. Math. Soc. Transl., 157 (1993), 227–237 | MR | Zbl

[22] E. Previato, “The Calogero–Moser–Krichever System and Elliptic Boussinesq Solitons”, Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, eds. J. Harnad, J. E. Marsden, CRM, Monreal, 1990, 57–67 | MR | Zbl

[23] E. Previato, “Monodromy of Boussinesq Elliptic Operators”, Acta Appl. Math., 36 (1994), 49–55 | DOI | MR | Zbl

[24] E. Previato, J. L. Verdier, “Boussinesq Elliptic Solitons: the Cyclic Case”, Proceedings of the Indo-French Conference on Geometry, eds. S. Ramanan, A. Beauville, Hindustan Book Agency, Dehli, 1993, 173–185 | MR | Zbl

[25] A. O. Smirnov, “A Matrix Analogue of Appell's Theorem and Reductions of Multi-Dimensional Riemann Theta Functions”, Math. USSR-Sb., 61 (1988), 379–388 | DOI | MR | Zbl

[26] H. Airault, H. P. Mckean, J. Moser, “Rational and Elliptic Solutions of the Korteweg–de Vries Equation a Related Many-Body Problem”, Comm. Pure. Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[27] H. P. Mckean, “Integrable Systems and Algebraic Curves”, Global Analysis, Lecture Notes in Mathematics, 755, eds. M. Grmela, J. E. Marsden, 1979, 83–200 | DOI | MR | Zbl

[28] R. Dickson, F. Gesztesy, K. Unterkofler, “Algebro-Geometric Solutions of the Boussinesq Hierarchy”, Rev. Math. Phys., 11 (1999), 823–879 | DOI | MR | Zbl

[29] X. G. Geng, L. H. Wu, G. L. He, “Algebro-Geometric Constructions of the Modified Boussinesq Flows and Quasi-Periodic Solutions”, Physica D, 240 (2011), 1262–1288 | DOI | MR | Zbl

[30] X. G. Geng, L. H. Wu, G. L. He, “Quasi-periodic Solutions of the Kaup–Kupershmidt Hierarchy”, J. Nonlinear Sci., 23 (2013), 527–555 | DOI | MR | Zbl

[31] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1994 | MR | Zbl

[32] D. Mumford, Tata lectures on theta, v. II, Birkhäuser, Boston, 1984 | MR | Zbl