Generic symmetries of the Laurent extension of quantum plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 333-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

A list of generic $U_q(\mathfrak{sl}_2)$-module algebra structures on the Laurent polynomial algebra over the quantum plane with uncountably many isomorphism classes is produced. Also, a complete list of these structures is presented in which the action of Cartan generator of $U_q(\mathfrak{sl}_2)$ is not reduced to multiplying $x$ and $y$ (the generators of quantum plane) by constants.
@article{JMAG_2015_11_a1,
     author = {S. Sinel'shchikov},
     title = {Generic symmetries of the {Laurent} extension of quantum plane},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {333--358},
     publisher = {mathdoc},
     volume = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_a1/}
}
TY  - JOUR
AU  - S. Sinel'shchikov
TI  - Generic symmetries of the Laurent extension of quantum plane
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2015
SP  - 333
EP  - 358
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2015_11_a1/
LA  - en
ID  - JMAG_2015_11_a1
ER  - 
%0 Journal Article
%A S. Sinel'shchikov
%T Generic symmetries of the Laurent extension of quantum plane
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2015
%P 333-358
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2015_11_a1/
%G en
%F JMAG_2015_11_a1
S. Sinel'shchikov. Generic symmetries of the Laurent extension of quantum plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 333-358. http://geodesic.mathdoc.fr/item/JMAG_2015_11_a1/

[1] E. Abe, M. E. Sweedler, Hopf Algebras, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl

[2] J. Alev, F. Dumas, “Rigidité des Plongements des Quotients Primitifs Minimaux de $U_q(\mathfrak{sl}(2))$ dans l'Algèbre Quantique de Weyl–Hayashi”, Nagoya Math. J., 143 (1996), 119–146 | MR | Zbl

[3] S. Duplij, Y. Hong, F. Li, “$U_q(\mathfrak{sl}_{m+1})$-Module Algebra Structures on the Coordinate Algebra of a Quantum Vector Space”, J. Lie Theory, 25:2 (2015), 327–361 | MR | Zbl

[4] S. Duplij, S. Sinel'shchikov, “Classification of $U_q(\mathfrak{sl}_2)$-Module Algebra Structures on the Quantum Plane”, J. Math. Phys., Anal., Geom., 6:4 (2010), 406–430 | MR | Zbl

[5] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995, 531 pp. | MR | Zbl

[6] E. Kirkman, C. Procesi, L. Small, “A $q$-Analog for the Virasoro Algebra”, Comm. Algebra, 22:10 (1994), 3755–3774 | DOI | MR | Zbl

[7] Park Hong Goo, Lee Jeongsig, Choi Seul Hee, Chen XueQing, Nam Ki-Bong, “Automorphism Groups of Some Algebras”, Science in China Series A: Mathematics, 52:2 (2009), 323–328 | DOI | MR | Zbl

[8] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969 | MR | Zbl