Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2015_11_a1, author = {S. Sinel'shchikov}, title = {Generic symmetries of the {Laurent} extension of quantum plane}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {333--358}, publisher = {mathdoc}, volume = {11}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2015_11_a1/} }
S. Sinel'shchikov. Generic symmetries of the Laurent extension of quantum plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2015), pp. 333-358. http://geodesic.mathdoc.fr/item/JMAG_2015_11_a1/
[1] E. Abe, M. E. Sweedler, Hopf Algebras, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl
[2] J. Alev, F. Dumas, “Rigidité des Plongements des Quotients Primitifs Minimaux de $U_q(\mathfrak{sl}(2))$ dans l'Algèbre Quantique de Weyl–Hayashi”, Nagoya Math. J., 143 (1996), 119–146 | MR | Zbl
[3] S. Duplij, Y. Hong, F. Li, “$U_q(\mathfrak{sl}_{m+1})$-Module Algebra Structures on the Coordinate Algebra of a Quantum Vector Space”, J. Lie Theory, 25:2 (2015), 327–361 | MR | Zbl
[4] S. Duplij, S. Sinel'shchikov, “Classification of $U_q(\mathfrak{sl}_2)$-Module Algebra Structures on the Quantum Plane”, J. Math. Phys., Anal., Geom., 6:4 (2010), 406–430 | MR | Zbl
[5] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995, 531 pp. | MR | Zbl
[6] E. Kirkman, C. Procesi, L. Small, “A $q$-Analog for the Virasoro Algebra”, Comm. Algebra, 22:10 (1994), 3755–3774 | DOI | MR | Zbl
[7] Park Hong Goo, Lee Jeongsig, Choi Seul Hee, Chen XueQing, Nam Ki-Bong, “Automorphism Groups of Some Algebras”, Science in China Series A: Mathematics, 52:2 (2009), 323–328 | DOI | MR | Zbl
[8] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969 | MR | Zbl