Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2014_10_a5, author = {A. N. Zachos}, title = {The {Plasticity} of {Some} {Fittable} {Surfaces} on a {Given} {Quadruple} {of~Points} in~the {Three-Dimensional} {Euclidean} {Space}}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {485--495}, publisher = {mathdoc}, volume = {10}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/} }
TY - JOUR AU - A. N. Zachos TI - The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2014 SP - 485 EP - 495 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/ LA - en ID - JMAG_2014_10_a5 ER -
%0 Journal Article %A A. N. Zachos %T The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2014 %P 485-495 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/ %G en %F JMAG_2014_10_a5
A. N. Zachos. The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 485-495. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/
[1] V. Boltyanski, H. Martini, V. Soltan, Geometric Methods and Optimization Problems, Kluwer, Dordrecht–Boston–London, 1999 | MR | Zbl
[2] S. Gueron, R. Tessler, “The Fermat–Steiner Problem”, Amer. Math. Monthly, 109 (2002), 443–451 | DOI | MR | Zbl
[3] A. O. Ivanov, A. A. Tuzhilin, “Geometry of Minimal Nets and the One-dimensional Plateau Problem”, Russian Math. Surveys, 47:2 (1992), 59–131 | DOI | MR | Zbl
[4] A. O. Ivanov, A. A. Tuzhilin, What Spaces Permit Fermat Points Construction and Melzak Algorithm?, http://ftp.uniyar.ac.ru/sites/default/files/papers/problems/
[5] S. Naya, N. Innami, “A Comparison Theorem for Steiner Minimum Trees in Surfaces with Curvature Bounded Below”, Tohoku Math. J., 65:1 (2013), 131–157 | DOI | MR | Zbl
[6] V. A. Toponogov, Differential Geometry of Curves and Surfaces, Birkhäuser, 2005 | MR | Zbl
[7] A. Wald, “Begründung einer Koordinatenlosen Differentialgeometrie der Flachen”, Ergebnisse eines Mathematischen Kolloquiums, 7 (1935), 24–46
[8] A. N. Zachos, G. Zouzoulas, “The Weighted Fermat–Torricelli Problem and an “Inverse” Problem”, J. Convex Anal., 15:1 (2008), 55–62 | MR | Zbl
[9] A. Zachos, A. Cotsiolis, “The Weighted Fermat–Torricelli Problem on a Surface and an “Inverse” Problem”, J. Math. Anal. Appl., 373:1 (2011), 44–58 | DOI | MR | Zbl
[10] A. Cotsiolis, A. Zachos, “Corrigendum to “The Weighted Fermat–Torricelli Problem on a Surface and an ‘`Inverse” Problem’'”, J. Math. Anal. Appl., 376:2 (2011) | DOI | MR
[11] A. Zachos, “Location of the Weighted Fermat–Torricelli Point on the $K$-plane”, Analysis (Munich), 33:3 (2013), 243–249 | MR | Zbl
[12] A. Zachos, “Exact Location of the Weighted Fermat–Torricelli Point on Flat Surfaces of Revolution”, Results Math., 65:1–2 (2014), 167–179 | DOI | MR
[13] A. Zachos, “Location of the Weighted Fermat–Torricelli Point on the $K$-plane, II”, Analysis (Munich), 34:1 (2014), 111–120 | MR | Zbl