The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 485-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a two-dimensional sphere in the three-dimensional Euclidean space which intersects a circular cylinder in three given points and the corresponding weighted Fermat–Torricelli point for a geodesic triangle such that these three points and the corresponding weighted Fermat–Torricelli point remain the same on the sphere for a different triad of weights which correspond to the vertices on the surface of the sphere. We derive a circular cone which passes from the same points that a circular cylinder passes. By applying the inverse weighted Fermat–Torricelli problem for different weights, we obtain the plasticity equations which provide the new weights of the weighted Fermat–Torricelli point for fixed geodesic triangles on the surface of a fittable sphere and a fittable circular cone with respect to the given quadruple of points on a circular cylinder, which inherits the curvature of the corresponding fittable surfaces.
@article{JMAG_2014_10_a5,
     author = {A. N. Zachos},
     title = {The {Plasticity} of {Some} {Fittable} {Surfaces} on a {Given} {Quadruple} {of~Points} in~the {Three-Dimensional} {Euclidean} {Space}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {485--495},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/}
}
TY  - JOUR
AU  - A. N. Zachos
TI  - The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 485
EP  - 495
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/
LA  - en
ID  - JMAG_2014_10_a5
ER  - 
%0 Journal Article
%A A. N. Zachos
%T The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 485-495
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/
%G en
%F JMAG_2014_10_a5
A. N. Zachos. The Plasticity of Some Fittable Surfaces on a Given Quadruple of~Points in~the Three-Dimensional Euclidean Space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 485-495. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a5/

[1] V. Boltyanski, H. Martini, V. Soltan, Geometric Methods and Optimization Problems, Kluwer, Dordrecht–Boston–London, 1999 | MR | Zbl

[2] S. Gueron, R. Tessler, “The Fermat–Steiner Problem”, Amer. Math. Monthly, 109 (2002), 443–451 | DOI | MR | Zbl

[3] A. O. Ivanov, A. A. Tuzhilin, “Geometry of Minimal Nets and the One-dimensional Plateau Problem”, Russian Math. Surveys, 47:2 (1992), 59–131 | DOI | MR | Zbl

[4] A. O. Ivanov, A. A. Tuzhilin, What Spaces Permit Fermat Points Construction and Melzak Algorithm?, http://ftp.uniyar.ac.ru/sites/default/files/papers/problems/

[5] S. Naya, N. Innami, “A Comparison Theorem for Steiner Minimum Trees in Surfaces with Curvature Bounded Below”, Tohoku Math. J., 65:1 (2013), 131–157 | DOI | MR | Zbl

[6] V. A. Toponogov, Differential Geometry of Curves and Surfaces, Birkhäuser, 2005 | MR | Zbl

[7] A. Wald, “Begründung einer Koordinatenlosen Differentialgeometrie der Flachen”, Ergebnisse eines Mathematischen Kolloquiums, 7 (1935), 24–46

[8] A. N. Zachos, G. Zouzoulas, “The Weighted Fermat–Torricelli Problem and an “Inverse” Problem”, J. Convex Anal., 15:1 (2008), 55–62 | MR | Zbl

[9] A. Zachos, A. Cotsiolis, “The Weighted Fermat–Torricelli Problem on a Surface and an “Inverse” Problem”, J. Math. Anal. Appl., 373:1 (2011), 44–58 | DOI | MR | Zbl

[10] A. Cotsiolis, A. Zachos, “Corrigendum to “The Weighted Fermat–Torricelli Problem on a Surface and an ‘`Inverse” Problem’'”, J. Math. Anal. Appl., 376:2 (2011) | DOI | MR

[11] A. Zachos, “Location of the Weighted Fermat–Torricelli Point on the $K$-plane”, Analysis (Munich), 33:3 (2013), 243–249 | MR | Zbl

[12] A. Zachos, “Exact Location of the Weighted Fermat–Torricelli Point on Flat Surfaces of Revolution”, Results Math., 65:1–2 (2014), 167–179 | DOI | MR

[13] A. Zachos, “Location of the Weighted Fermat–Torricelli Point on the $K$-plane, II”, Analysis (Munich), 34:1 (2014), 111–120 | MR | Zbl