On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 451-484.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider first the $n\times n$ random matrices $ H_{n}=A_{n}+U_{n}^{* }B_{n}U_{n}$, where $A_{n}$ and $B_{n}$ are Hermitian, having the limiting normalized counting measure (NCM) of eigenvalues as $ n\rightarrow \infty$, and $U_{n}$ is unitary uniformly distributed over $ U(n)$. We find the leading term of asymptotic expansion for the covariance of elements of resolvent of $H_{n}$ and establish the Central Limit Theorem for the elements of sufficiently smooth test functions of the corresponding linear statistics. We consider then analogous problems for the matrices $ W_{n}=S_{n}U_{n}^{* }T_{n}U_{n}$, where $U_n $ is as above and $S_n$ and $T_n $ are non-random unitary matrices having limiting NCM's as $n\rightarrow \infty$.
@article{JMAG_2014_10_a4,
     author = {V. Vasilchuk},
     title = {On the {Fluctuations} of {Entries} of {Matrices} whose {Randomness} is due to {Classical} {Groups}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {451--484},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a4/}
}
TY  - JOUR
AU  - V. Vasilchuk
TI  - On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 451
EP  - 484
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a4/
LA  - en
ID  - JMAG_2014_10_a4
ER  - 
%0 Journal Article
%A V. Vasilchuk
%T On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 451-484
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a4/
%G en
%F JMAG_2014_10_a4
V. Vasilchuk. On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 451-484. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a4/

[1] L. Pastur, V. Vasilchuk, “On the Law of Addition of Random Matrices”, Comm. Math. Phys., 47 (2000), 1–30 | MR

[2] L. Pastur, V. Vasilchuk, “On the Law of Addition of Random Matrices: Covariance and the Central Limit Theorem for Traces of Resolvent”, CRM Proc. Lect. Notes, 42, 2007, 399–416 | MR | Zbl

[3] L. Pastur, M. Shcherbina, Eigenvalue Distribution of Random Matrices, Math. Surv. Monogr., 171, AMS, RI, 2011 | DOI | MR | Zbl

[4] M. Shcherbina, “Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and Sample Covariance Random Matrices”, J. Math. Phys., Anal., Geom., 7:2 (2011), 176–192 | MR | Zbl

[5] G. Chistyakov, F. Götze, The Arithmetic of Distributions in Free Probability Theory, arXiv: math/0508245v2 [math.OA]

[6] V. Vasilchuk, “On the Law of Multiplication of Random Matrices”, Math. Phys. Anal. Geom., 4 (2001), 1–36 | DOI | MR | Zbl

[7] A. Lytova, L. Pastur, “Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices”, J. Stat. Phys., 134 (2009), 147–159 | DOI | MR | Zbl

[8] A. Lytova, “On Non-Gaussian Limiting Laws for Certain Statistics of Wigner Matrices”, J. Math. Phys., Anal., Geom., 9:4 (2013), 536–581 | MR | Zbl

[9] S. O'Rourke, D. Renfrew, A. Soshnikov, “On Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices with Non-Identicaly Distributed Entries”, J. Theor. Probab., 26:3 (2013), 750–780 | DOI | MR | Zbl