Functional Models in De Branges Spaces of One Class Commutative Operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 430-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a commutative system of the linear bounded operators $ T_1$, $T_2 $, which operate in the Hilbert space $ H $ and none of the operators $ T_1$, $T_2 $ is a compression, the functional model is constructed. The model is built for a circle in de Branges space.
@article{JMAG_2014_10_a3,
     author = {V. N. Syrovatskyi},
     title = {Functional {Models} in {De} {Branges}  {Spaces} of {One} {Class} {Commutative} {Operators}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {430--450},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a3/}
}
TY  - JOUR
AU  - V. N. Syrovatskyi
TI  - Functional Models in De Branges  Spaces of One Class Commutative Operators
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 430
EP  - 450
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a3/
LA  - en
ID  - JMAG_2014_10_a3
ER  - 
%0 Journal Article
%A V. N. Syrovatskyi
%T Functional Models in De Branges  Spaces of One Class Commutative Operators
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 430-450
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a3/
%G en
%F JMAG_2014_10_a3
V. N. Syrovatskyi. Functional Models in De Branges  Spaces of One Class Commutative Operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 430-450. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a3/

[1] M. S. Livshits, A. A. Yantsevich, Theory of Operator Knots in Hilbert Spaces, Izdat. Kharkiv Univ., Kharkov, 1971 (Russian) | MR | Zbl

[2] V. A. Zolotarev, Analytical Methods of Spectral Representation of Non-unitary and Non-selfadjoint Operators, Kharkiv National University, Kharkov, 2003 (Russian)

[3] Lui De Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, London, 1968 | MR

[4] M. S. Livshits, “About one Class of Linear Operators in Hilbert Space”, Math. Collection, 19:2 (1946), 236–260

[5] B. S. Nagy, C. Foias, Harmonic Analysis of Operators in Hilbert Space, Mir, M., 1970 (Russian) | MR | Zbl

[6] V. A. Zolotarev, V. N. Syrovatsky, “De Branges Transform on the Cicle”, Vestnik KNU V. N. Karazin. Series “Mathematics and Applied Mechanics”, 2005, no. 711 (Russian)

[7] V. A. Zolotarev, “Model Representations of Commutative Systems of Linear Operators”, Funct. Anal. and Appl., 22:1 (1988), 66–68 | DOI | MR | Zbl

[8] V. A. Zolotarev, “Functional Model of Commutative Operator Systems”, J. Math. Phys., Anal., Geom., 4:3 (2008), 420–440 | MR | Zbl

[9] V. N. Syrovatsky, “Functional Models of Commutative Systems of Operators Close to the Unitary”, Vestnik KNU V. N. Karazin. Series “Mathematics and Applied Mechanics”, 2012, no. 1018 (Russian)