Holomorphic Riemannian Maps
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 422-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce holomorphic Riemannian maps between almost Hermitian manifolds as a generalization of holomorphic submanifolds and holomorphic submersions, give examples and obtain a geometric characterization of harmonic holomorphic Riemannian maps from almost Hermitian manifolds to Kähler manifolds.
@article{JMAG_2014_10_a2,
     author = {B. \c{S}ahin},
     title = {Holomorphic {Riemannian} {Maps}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {422--429},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a2/}
}
TY  - JOUR
AU  - B. Şahin
TI  - Holomorphic Riemannian Maps
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 422
EP  - 429
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a2/
LA  - en
ID  - JMAG_2014_10_a2
ER  - 
%0 Journal Article
%A B. Şahin
%T Holomorphic Riemannian Maps
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 422-429
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a2/
%G en
%F JMAG_2014_10_a2
B. Şahin. Holomorphic Riemannian Maps. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 422-429. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a2/

[1] R. Abraham, J. E. Marsden, N. Ratiu, Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988 | MR

[2] P. Baird, J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Clarendon Press, Oxford, 2003 | MR

[3] P. Candelas, G. Horowitz, A. Strominger, E. Witten, “Vacuum Configurations for Superstrings”, Nucl. Phys. B, 258 (1985), 46–74 | DOI | MR

[4] G. Esposito, “From Spinor Geometry to Complex General Relativity”, Int. J. Geom. Methods Mod. Phys., 2:4 (2005), 675–731 | DOI | MR | Zbl

[5] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., Inc., River Edge–New York, 2004 | MR | Zbl

[6] A. E. Fischer, “Riemannian Maps between Riemannian Manifolds”, Contemporary Math., 132, 1992, 331–366 | DOI | MR | Zbl

[7] E. Garcia-Rio, D. N. Kupeli, Semi-Riemannian Maps and their Applications, Kluwer Academic, 1999 | MR

[8] A. Gray, “Pseudo-Riemannian Almost Product Manifolds and Submersions”, J. Math. Mech., 16 (1967), 715–737 | MR | Zbl

[9] D. E. Lerner, P. D. Sommers, Complex Manifold Techniques in Theoretical Physics, Pitman Advanced Publishing, 1979 | MR | Zbl

[10] T. Nore, “Second Fundamental Form of a Map”, Ann. Mat. Pur. and Appl., 146 (1987), 281–310 | DOI | MR | Zbl

[11] B. O'Neill, “The Fundamental Equations of a Submersion”, Michigan Math. J., 13 (1966), 459–469 | DOI | MR | Zbl

[12] R. Penrose, “Physical Spacetime and Nonrealizable CR-Structure”, Proc. Simposia in Pure Math., 39, 1983, 401–422 | DOI | Zbl

[13] B. Şahin, “Invariant and Anti-Invariant Riemannian Maps to Kähler Manifolds”, Int. J. Geom. Methods Mod. Phys., 7:3 (2010), 1–19 | MR

[14] A. J. Tromba, Teichmuller Theory in Riemannian Geometry, Birkhauser Verlag, Boston, 1992 | MR | Zbl

[15] B. Watson, “Almost Hermitian Submersion”, J. Diff. Geom., 11 (1976), 147–165 | MR | Zbl

[16] K. Yano, M. Kon, Structures on Manifolds, Ser. Pure Math. World Scientific, 1984 | DOI | MR