Optimal Control Method for Solving the Cauchy--Neumann Problem for the Poisson Equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 412-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the ill-posed Cauchy–Neumann problem is considered for the Poisson equation. The problem is reduced to the optimal control problem that is regularized. Optimization methods are applied to the solution of the obtained problem.
@article{JMAG_2014_10_a1,
     author = {H. F. Guliyev and Y. S. Gasimov and S. M. Zeynalli},
     title = {Optimal {Control} {Method} for {Solving} the {Cauchy--Neumann} {Problem} for the {Poisson} {Equation}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {412--421},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a1/}
}
TY  - JOUR
AU  - H. F. Guliyev
AU  - Y. S. Gasimov
AU  - S. M. Zeynalli
TI  - Optimal Control Method for Solving the Cauchy--Neumann Problem for the Poisson Equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 412
EP  - 421
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a1/
LA  - en
ID  - JMAG_2014_10_a1
ER  - 
%0 Journal Article
%A H. F. Guliyev
%A Y. S. Gasimov
%A S. M. Zeynalli
%T Optimal Control Method for Solving the Cauchy--Neumann Problem for the Poisson Equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 412-421
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a1/
%G en
%F JMAG_2014_10_a1
H. F. Guliyev; Y. S. Gasimov; S. M. Zeynalli. Optimal Control Method for Solving the Cauchy--Neumann Problem for the Poisson Equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 412-421. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a1/

[1] M. M. Amangaliyeva, M. T. Janaliyev, K. B. Imanberdiyev, “On an Optimization Method to the Solution of the Cauchy–Dirichlet Problem for the Poisson Equation”, J. Inv. Ill-Posed Problems, 15 (2007), 1–10 | DOI

[2] Y. S. Gasimov, “On a Shape Design Problem for One Spectral Functional”, J. Inv. Ill-Posed Problems, 21:5 (2013), 629–637 | DOI | MR | Zbl

[3] R. S. Gurbanov, N. B. Nuriyev, R. S. Gurbanov, “Technological Control and Optimization Problems in Oil Production: Theory and Practice”, Appl. Comput. Math., 12:3 (2013), 314–324 | Zbl

[4] S. I. Kabanikhin, Inverse and ill-Posed Problems, Syb. Sci. Publishing, Novosibirsk, 2009

[5] O. A. Ladijenskaya, Boundary Problems of the Mathematical Physics, Nauka, M., 1973

[6] M. M. Lavrentev, “On a Cauchy Problem for the Poisson Equation”, Izv. AS USSR, ser. Math., 20:6 (1955), 819–842 | MR

[7] R. Lattes, J.-L. Lions, Quazi-Reversibility Method and its Applications, Mir, M., 1970 | MR | Zbl

[8] J. L. Lions, Optimal Control of the Systems Described by the Partial Differential Equations, Nauka, M., 1972 | MR

[9] M. A. Naimark, Linear Differential Operators, Nauka, M., 1969 | MR | Zbl

[10] V. A. Trenogin, Functional Analiysis, Nauka, M., 1980 | MR | Zbl

[11] A. N. Tikhonov, V. Ya. Arsenin, Methods to the Solution of the ill-Posed Problems, Nauka, M., 1974 | MR

[12] F. P. Vasilev, Methods of Optimization, Faktorial, M., 2002