A Study on the $\phi$-Symmetric $\mathrm{K}$-Contact Manifold Admitting Quarter-Symmetric Metric Connection
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 399-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local $\phi$-symmetry and $\phi$-symmetry of a $\mathrm{K}$-contact manifold with respect to the quarter-symmetric metric connection are studied and the results concerning the $\phi$-symmetry, scalar curvature with respect to the quarter-symmetric and the Levi–Civita connection are obtained. Further, the locally $\mathrm{C}$-Bochner $\phi$-symmetric and the locally $\phi$-symmetric $\mathrm{K}$-contact manifolds with respect to the quarter-symmetric metric connection are studied and some results are obtained. The results are assisted by the examples.
@article{JMAG_2014_10_a0,
     author = {C. S. Bagewadi and Gurupadavva Ingalahalli},
     title = {A {Study} on the $\phi${-Symmetric} $\mathrm{K}${-Contact} {Manifold} {Admitting} {Quarter-Symmetric} {Metric} {Connection}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {399--411},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_a0/}
}
TY  - JOUR
AU  - C. S. Bagewadi
AU  - Gurupadavva Ingalahalli
TI  - A Study on the $\phi$-Symmetric $\mathrm{K}$-Contact Manifold Admitting Quarter-Symmetric Metric Connection
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 399
EP  - 411
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_a0/
LA  - en
ID  - JMAG_2014_10_a0
ER  - 
%0 Journal Article
%A C. S. Bagewadi
%A Gurupadavva Ingalahalli
%T A Study on the $\phi$-Symmetric $\mathrm{K}$-Contact Manifold Admitting Quarter-Symmetric Metric Connection
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 399-411
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_a0/
%G en
%F JMAG_2014_10_a0
C. S. Bagewadi; Gurupadavva Ingalahalli. A Study on the $\phi$-Symmetric $\mathrm{K}$-Contact Manifold Admitting Quarter-Symmetric Metric Connection. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014), pp. 399-411. http://geodesic.mathdoc.fr/item/JMAG_2014_10_a0/

[1] K. S. Amur, S. S. Pujar, “On Submanifolds of a Riemannian Manifold Admitting a Metric Semi-Symmetric Connection”, Tensor, N.S., 32 (1978), 35–38 | MR | Zbl

[2] C. S. Bagewadi, “On Totally Real Submanifolds of a Kahlerian Manifold Admitting Semi-Symmetric Metric $F$-Connection”, Indian J. Pure. Appl. Math., 13:5 (1982), 528–536 | MR | Zbl

[3] C. S. Bagewadi, D. G. Prakasha, Venkatesha, “A Study of Ricci Quarter-Symmetric Metric Connection on a Riemannian Manifold”, Indian J. Math., 50:3 (2008), 607–615 | MR | Zbl

[4] T. Q. Binh, “On Semi-Symmetric Metric Connection”, Periodica Math. Hungarica, 21:2 (1990), 101–107 | DOI | MR | Zbl

[5] S. C. Biswas, U. C. De, “Quarter-Symmetric Metric Connection in an SP-Sasakian Manifold”, Commun. Fac. Sci. Univ. Ank. Series, 46 (1997), 9–56

[6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin–New–York, 1976 | MR | Zbl

[7] E. Boeckx, P. Buecken, L. Vanhecke, “$\phi$-Symmetric Contact Metric Spaces”, Glasgow Math. J., 41 (1999), 409–416 | DOI | MR | Zbl

[8] U. C. De, J. Sengupta, “On a Type of Semi-Symmetric Metric Connection on an Almost Contact Metric Manifold”, Filomat, 14 (2000), 33–42 | MR | Zbl

[9] A. Friedmann, J. A. Schouten, “Uber die Geometrie der Halbsymmetrischen Ubertragung”, Math. Zeitschr., 21 (1924), 211–223 | DOI | MR | Zbl

[10] S. Golab, “On Semi-Symmetric and Quarter-Symmetric Linear Connections”, Tensor, N.S., 29 (1975), 293–301 | MR

[11] H. A. Hayden, “Subspaces of a Space with Torsion”, Proc. London Math. Soc., 34 (1932), 27–50 | DOI | MR

[12] R. S. Mishra, S. N. Pandey, “On Semi-Symmetric Metric F-Connections”, Tensor, N.S., 34 (1980), 1–7 | MR | Zbl

[13] Mukut Mani Tripathi, A New Connection in a Riemannian Manifold, 5 Feb 2008, arXiv: 0802.0569v1 | MR

[14] S. Mukhopadhyay, A. K. Roy, B. Barua, “Some Properties of Quarter-Symmetric Metric Connection on a Riemannian Manifold”, Soochow J. Math., 17:2 (1991), 205–211 | MR | Zbl

[15] S. C. Rastogi, “On Quarter-Symmetric Metric Connections”, Tensor, N.S., 44 (1987), 133–141 | MR | Zbl

[16] S. Sasaki, Lecture Note on Almost Contact Manifolds, v. I, Tohoku University, 1965 | MR

[17] A. A. Shaikh, Y. Matsuyama, S. K. Jana, S. Eyasmin, “On the Existence of Weakly Ricci Symmetric Manifolds Admitting Semi-Symmetric Metric Connection”, Tensor N.S., 70 (2008), 95–106 | MR | Zbl

[18] T. Takahashi, “Sasakian $\phi$-Symmetric Spaces”, Tohoku Math. J., 29 (1977), 91–113 | DOI | MR | Zbl

[19] K. Yano, “On Semi-Symmetric Metric Connection”, Rev. Rou. de Math. Pure. et App., 15:9 (1970), 1579–1586 | MR | Zbl

[20] K. Yano, T. Imai, “Quarter-Symmetric Metric Connections and their Curvature Tensors”, Tensor N.S., 38 (1982), 13–18 | MR | Zbl