On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 582-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the Skitovich–Darmois theorem, the Gaussian distribution on the real line is characterized by the independence of two linear forms of $n$ independent random variables. The theorem is known to fail for a compact connected Abelian group even in the case when $n=2$. In the paper, it is proved that a weak analogue of the Skitovich–Darmois theorem holds for some $\mathbf{a}$-adic solenoids if we consider three independent linear forms of three random variables.
@article{JMAG_2013_9_a6,
     author = {I. P. Mazur},
     title = {On the {Skitovich--Darmois} {Theorem} for $\mathbf{a}${-Adic} {Solenoids}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {582--593},
     publisher = {mathdoc},
     volume = {9},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/}
}
TY  - JOUR
AU  - I. P. Mazur
TI  - On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 582
EP  - 593
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/
LA  - en
ID  - JMAG_2013_9_a6
ER  - 
%0 Journal Article
%A I. P. Mazur
%T On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 582-593
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/
%G en
%F JMAG_2013_9_a6
I. P. Mazur. On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 582-593. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/

[1] G. M. Feldman, “On the Skitovich–Darmois Theorem for Finite Abelian Groups”, Theory Probab. Appl., 37 (1992), 621–631 | DOI | MR | Zbl

[2] G. M. Feldman, P. Graczyk, “On the Skitovich–Darmois Theorem on Compact Abelian Groups”, J. Theory Probab., 13 (2000), 859–869 | DOI | MR | Zbl

[3] G. M. Feldman, “On a Characterization Theorem for Locally Compact Abelian Groups”, Probab. Theory Relat. Fields, 133 (2005), 345–357 | DOI | MR | Zbl

[4] G. M. Feldman, P. Graczyk, “On the Skitovich–Darmois Theorem for Discrete Abelian Groups”, Theory Probab. Appl., 49 (2005), 527–531 | DOI | MR | Zbl

[5] G. M. Feldman, M. Myronyuk, “On the Skitovich–Darmois Equation in the Classes of Continuous and Measurable Functions”, Aequationes Mathematicae, 75 (2008), 75–92 | DOI | MR | Zbl

[6] G. M. Feldman, “Independent Linear Statistics on $\mathbf{a}$-Adic Solenoids”, Theory Probab. Appl., 54:3 (2010), 375–388 | DOI | MR

[7] G. M. Feldman, Functional Equations and Characterizations Problems on Locally Compact Abelian Groups, EMS Tracts in Mathematics, 5, European Mathematical Society (EMS), Zurich, 2008 | MR | Zbl

[8] G. M. Feldman, M. Myronyuk, Independent Linear Statistics on the Cylinders, 2012, arXiv: 1212.2772v1

[9] A. M. Kagan, Yu. V. Linnik, C. Radhakrishna Rao, Characterization Problems in Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1973 | MR | Zbl

[10] I. P. Mazur, “The Skitovich–Darmois Theorem for Finite Abelian Groups (the case of $n$ linear forms of $n$ random variables)”, U.M.J., 4 (2011), 1512–1523

[11] I. P. Mazur, The Skitovich–Darmois Theorem for Discrete and Compact Totally Disconnected Abelian Groups, 2011, arXiv: 1112.1488v1

[12] E. Hewitt, A. Ross, Abstract Harmonic Analysis, v. 1, Springer-Verlag, Berlin–Gottingen–Heildelberg, 1963 | Zbl

[13] K. R. Parthasarathy, Probability Measures on Metric Spaces, Chelsea Publishing (AMS), 1967 | MR