On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 582-593

Voir la notice de l'article provenant de la source Math-Net.Ru

By the Skitovich–Darmois theorem, the Gaussian distribution on the real line is characterized by the independence of two linear forms of $n$ independent random variables. The theorem is known to fail for a compact connected Abelian group even in the case when $n=2$. In the paper, it is proved that a weak analogue of the Skitovich–Darmois theorem holds for some $\mathbf{a}$-adic solenoids if we consider three independent linear forms of three random variables.
@article{JMAG_2013_9_a6,
     author = {I. P. Mazur},
     title = {On the {Skitovich--Darmois} {Theorem} for $\mathbf{a}${-Adic} {Solenoids}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {582--593},
     publisher = {mathdoc},
     volume = {9},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/}
}
TY  - JOUR
AU  - I. P. Mazur
TI  - On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 582
EP  - 593
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/
LA  - en
ID  - JMAG_2013_9_a6
ER  - 
%0 Journal Article
%A I. P. Mazur
%T On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 582-593
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/
%G en
%F JMAG_2013_9_a6
I. P. Mazur. On the Skitovich--Darmois Theorem for $\mathbf{a}$-Adic Solenoids. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 582-593. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a6/