Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2013_9_a5, author = {A. Lytova}, title = {On {Non-Gaussian} {Limiting} {Laws} for {Certain} {Statistics} {of~Wigner} {Matrices}}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {536--581}, publisher = {mathdoc}, volume = {9}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a5/} }
A. Lytova. On Non-Gaussian Limiting Laws for Certain Statistics of~Wigner Matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 536-581. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a5/
[1] G. W. Anderson, O. Zeitouni, “CLT for a Band Matrix Model”, Probab. Theory Related Fields, 134 (2006), 283–338 | DOI | MR | Zbl
[2] Z. D. Bai, B. Q. Miao, G. M. Pan, “On Asymptotics of Eigenvectors of Large Sample Covariance Matrix”, Ann. Probab, 35 (2007), 1532–1572 | DOI | MR | Zbl
[3] Z. D. Bai, J. W. Silverstein, “CLT for Linear Sspectral Statistics of Large Dimensional Sample Covariance Matrices”, Ann. Probab., 32 (2004), 553–605 | DOI | MR | Zbl
[4] V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, 62, Amer. Math. Soc., Providence, RI | MR | Zbl
[5] O. Costin, J. L. Lebowitz, “Gaussian Fluctuations in Random Matrices”, Phys. Rev. Lett., 75 (1995), 69–72 | DOI
[6] L. Erdös, “Universality of Wigner Random Matrices: a Survey of Recent Results”, Uspekhi Mat. Nauk, 66:3(399) (2011), 67–198 | DOI | MR | Zbl
[7] A. Guionnet, “Large Deviations, Upper Bounds, and Central Limit Theorems for Non-commutative Functionals of Gaussian Large Random Matrices”, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 341–384 | DOI | MR | Zbl
[8] K. Johansson, “On Fluctuations of Eigenvalues of Random Hermitian Matrices”, Duke Math. J., 91 (1998), 151–204 | DOI | MR | Zbl
[9] B. Khoruzhenko, A. Khorunzhy, L. Pastur, “Asymptotic Properties of Large Random Matrices with Independent Entries”, J. Physics A: Math. and General, 28 (1995), L31–L35 | DOI | MR | Zbl
[10] O. Ledoit, S. Pećhe, Eigenvectors of Some Large Sample Covariance Matrix Ensembles, arXiv: 0911.3010 | MR
[11] A. Lytova, L. Pastur, “Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and the Sample Covariance Random Matrices”, Metrika, 69:2 (2009), 153–172 | DOI | MR
[12] A. Lytova, L. Pastur, “Central Limit Theorem for Linear Eigenvalue Statistics of Random Matrices with Independent Entries”, Annals Probability, 37:5 (2009), 1778-1840 | DOI | MR | Zbl
[13] A. Lytova, L. Pastur, “Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices”, J. Stat. Phys., 134 (2009), 147–159 | DOI | MR | Zbl
[14] A. Lytova, L. Pastur, Non-Gaussian Limiting Laws for the Entries of Regular Functions of the Wigner Matrices, arXiv: 1103.2345v2
[15] L. Pastur, “A Simple Approach to the Global Regime of Gaussian Ensembles of Random Matrices”, Ukrainian Math. J., 57 (2005), 936–966 | DOI | MR | Zbl
[16] L. Pastur, “Limiting Laws of Linear Eigenvalue Statistics for Unitary Invariant Matrix Models”, J. Math. Phys., 47 (2006), 103303 | DOI | MR | Zbl
[17] L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Math. Surv. and Monographs. Amer. Math. Soc., 171, 2011, 634 pp. | DOI | MR | Zbl
[18] A. Pizzo, D. Renfrew, A. Soshnikov, “Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices”, J. Stat. Phys., 146 (2012), 550–591 | DOI | MR | Zbl
[19] S. O'Rourke, D. Renfrew, A. Soshnikov, On Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices with Non-Identically Distributed Entries, arXiv: 1104.1663v4
[20] M. Shcherbina, “Central Limit Theorem for Linear Eigenvalue Statistics of Wigner and Sample Covariance Random Matrices”, J. Math. Phys., Anal., Geom., 7:2 (2011), 176–192 | MR | Zbl
[21] Ya. Sinai, A. Soshnikov, “Central Limit Theorem for Traces of Large Random Symmetric Matrices with Independent Matrix Elements”, Bol. Soc. Brasil. Mat. (N.S.), 29 (1998), 1–24 | DOI | MR | Zbl
[22] A. Soshnikov, “Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities”, Ann. Probab., 28 (2000), 1353–1370 | DOI | MR | Zbl