Eigenfunctions of the Cosine and Sine Transforms
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 476-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of the eigensubspaces of the cosine and sine operators is given. The spectrum of each of these two operators consists of two eigenvalues $(1,-1)$ and their eigensubspaces are infinite-dimensional. There are many possible bases for these subspaces, but most popular are the ones constructed from the Hermite functions. We present other "bases" which are not discrete orthogonal sequences of vectors, but continuous orthogonal chains of vectors. Our work can be considered to be a continuation and further development of the results obtained by Hardy and Titchmarsh: “Self-reciprocal functions” (Quart. J. Math., Oxford, Ser. 1 (1930)).
@article{JMAG_2013_9_a3,
     author = {V. Katsnelson},
     title = {Eigenfunctions of the {Cosine} and {Sine} {Transforms}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {476--495},
     publisher = {mathdoc},
     volume = {9},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a3/}
}
TY  - JOUR
AU  - V. Katsnelson
TI  - Eigenfunctions of the Cosine and Sine Transforms
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 476
EP  - 495
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_a3/
LA  - en
ID  - JMAG_2013_9_a3
ER  - 
%0 Journal Article
%A V. Katsnelson
%T Eigenfunctions of the Cosine and Sine Transforms
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 476-495
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_a3/
%G en
%F JMAG_2013_9_a3
V. Katsnelson. Eigenfunctions of the Cosine and Sine Transforms. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 476-495. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a3/

[1] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge Univ. Press, Cambridge, 1933 | MR

[2] G. H. Hardy, E. C. Titchmarsh, “Self-Reciprocal Functions”, Quart. J. Math., Oxford, Ser. 1, 1930, 196–231 | DOI | Zbl

[3] G. H. Hardy, E. C. Titchmarsh, “Formulae Connecting Different Classes of Self-Reciprocal Functions”, Proc. London Math. Soc., Ser. 2, 33 (1931), 225–232 | MR

[4] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937; Third Edition, Chelsea Publishing Co., New York, 1986 | MR

[5] J. L. Burchnall, “Symbolic Relations Assotiated with Fourier Transforms”, Quart. J. Math., 3 (1932), 213–223 | DOI

[6] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge Univ. Press, Cambridge, 1927 | MR

[7] Encyclopaedia of Mathematics, Kluwer Acad. Publ., Dordrecht–Boston–London, 1995