Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians~II
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 455-475

Voir la notice de l'article provenant de la source Math-Net.Ru

A new notion of the generalized Tanaka–Webster $\mathfrak D^{\bot}$-invariant for a hypersurface $M$ in $G_2({\mathbb C}^{m+2})$ is introduced, and a classification of Hopf hypersurfaces in $G_2({\mathbb C}^{m+2})$ with generalized Tanaka–Webster $\mathfrak D^{\bot}$-invariant shape operator is given.
@article{JMAG_2013_9_a2,
     author = {I. Jeong and E. Pak and Y. J. Suh},
     title = {Lie {Invariant} {Shape} {Operator} for {Real} {Hypersurfaces} in {Complex} {Two-Plane} {Grassmannians~II}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {455--475},
     publisher = {mathdoc},
     volume = {9},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a2/}
}
TY  - JOUR
AU  - I. Jeong
AU  - E. Pak
AU  - Y. J. Suh
TI  - Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians~II
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 455
EP  - 475
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_a2/
LA  - en
ID  - JMAG_2013_9_a2
ER  - 
%0 Journal Article
%A I. Jeong
%A E. Pak
%A Y. J. Suh
%T Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians~II
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 455-475
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_a2/
%G en
%F JMAG_2013_9_a2
I. Jeong; E. Pak; Y. J. Suh. Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians~II. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 455-475. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a2/