A Remark on Condensation of Singularities
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 448-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently Alan D. Sokal in Amer. Math. Monthly 118 (2011), No. 5, 450–452, gave a very short and completely elementary proof of the uniform boundedness principle. The aim of this note is to point out that by using a similar technique one can give a short and simple proof of a stronger statement, namely a principle of condensation of singularities for certain double-sequences of non-linear operators on quasi-Banach spaces, which is a bit more general than a result of I. S. Gál from Duke Math. J. 20 (1953), No. 1, 27–35.
@article{JMAG_2013_9_a1,
     author = {J.-D. Hardtke},
     title = {A {Remark} on {Condensation} of {Singularities}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {448--454},
     publisher = {mathdoc},
     volume = {9},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a1/}
}
TY  - JOUR
AU  - J.-D. Hardtke
TI  - A Remark on Condensation of Singularities
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 448
EP  - 454
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_a1/
LA  - en
ID  - JMAG_2013_9_a1
ER  - 
%0 Journal Article
%A J.-D. Hardtke
%T A Remark on Condensation of Singularities
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 448-454
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_a1/
%G en
%F JMAG_2013_9_a1
J.-D. Hardtke. A Remark on Condensation of Singularities. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 448-454. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a1/

[1] T. Aoki, “Locally Bounded Linear Topological Spaces”, Proc. Imp. Acad. Tokyo, 18:10 (1942), 588–594 | DOI | MR | Zbl

[2] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux équations integrales”, Fund. Math., 3 (1922), 133–181 | Zbl

[3] S. Banach, S. Steinhaus, “Sur le principe de la condensation des singularités”, Fund. Math., 9 (1927), 50–61 | Zbl

[4] W. Dickmeis, R. J. Nessel, E. van Wickeren, “On Nonlinear Condensation Principles with Rates”, Manuskripta Math., 52 (1985), 1–20 | DOI | MR | Zbl

[5] I. S. Gál, “Sur la méthode de résonance et sur un theorème concernant les espaces de type (B)”, Annales de l'Institut Fourier, 3 (1951), 23–30 | DOI | MR | Zbl

[6] I. S. Gál, “The Principle of Condensation of Singularities”, Duke Math. J., 20:1 (1953), 27–35 | DOI | MR | Zbl

[7] H. Hahn, “Über Folgen Linearer Operationen”, Monatsh. Math. Phys., 32 (1922), 3–88 | DOI | MR | Zbl

[8] N. Kalton, “Quasi-Banach Spaces”, Handbook of the Geometry of Banach Spaces, v. 2, eds. W. B. Johnson, J. Lindenstrauss, North-Holland, Amsterdam–New York, 2003, 1099–1130 | DOI | MR | Zbl

[9] N. J. Kalton, N. T. Peck, J. W. Roberts, An $F$-Space Sampler, London Math. Soc. Lect. Notes, 89, Cambridge Univ. Press, Cambridge, 1985 | DOI | MR

[10] J. Kolomý, “A Note on Uniform Boundedness Principle for Nonlinear Operators”, Comm. Math. Univ. Carol., 10:2 (1969), 207–216 | MR | Zbl

[11] S. Rolewicz, “On a Certain Class of Linear Metric Spaces”, Bull. Polon. Acad. Sci. Sér. Sci. Math. Astron. Phys., 5 (1957), 471–473 | MR | Zbl

[12] A. D. Sokal, “A Really Simple Elementary Proof of the Uniform Boundedness Theorem”, Amer. Math. Monthly, 118:5 (2011), 450–452 | DOI | MR | Zbl