A Remark on Condensation of Singularities
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 448-454
Voir la notice de l'article provenant de la source Math-Net.Ru
Recently Alan D. Sokal in Amer. Math. Monthly 118 (2011), No. 5, 450–452, gave a very short and completely elementary proof of the uniform boundedness principle. The aim of this note is to point out that by using a similar technique one can give a short and simple proof of a stronger statement, namely a principle of condensation of singularities for certain double-sequences of non-linear operators on quasi-Banach spaces, which is a bit more general than a result of I. S. Gál from Duke Math. J. 20 (1953), No. 1, 27–35.
@article{JMAG_2013_9_a1,
author = {J.-D. Hardtke},
title = {A {Remark} on {Condensation} of {Singularities}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {448--454},
publisher = {mathdoc},
volume = {9},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a1/}
}
J.-D. Hardtke. A Remark on Condensation of Singularities. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 448-454. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a1/