Surfaces Given with the Monge Patch in $\mathbb{E}^{4}$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 435-447
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper we consider the surfaces in the Euclidean 4-space $\mathbb{E}^{4}$ given with a Monge patch $z=f(u,v)$, $w=g(u,v)$ and study the curvature properties of these surfaces. We also give some special examples of these surfaces first defined by Yu. Aminov. Finally, we prove that every Aminov surface is a non-trivial Chen surface.
@article{JMAG_2013_9_a0,
author = {B. Bulca and K. Arslan},
title = {Surfaces {Given} with the {Monge} {Patch} in $\mathbb{E}^{4}$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {435--447},
publisher = {mathdoc},
volume = {9},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_a0/}
}
B. Bulca; K. Arslan. Surfaces Given with the Monge Patch in $\mathbb{E}^{4}$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013), pp. 435-447. http://geodesic.mathdoc.fr/item/JMAG_2013_9_a0/