Universality at the edge for unitary matrix models
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 367-392

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the results on the $1/n$-expansion of the Verblunsky coefficients for a class of polynomials orthogonal on the unit circle with $n$ varying weight, we prove that the local eigenvalue statistic for unitary matrix models is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of four times differentiable potentials and of supports, consisting of one interval.
@article{JMAG_2012_8_a3,
     author = {M. Poplavskyi},
     title = {Universality at the edge for unitary matrix models},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {367--392},
     publisher = {mathdoc},
     volume = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/}
}
TY  - JOUR
AU  - M. Poplavskyi
TI  - Universality at the edge for unitary matrix models
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 367
EP  - 392
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/
LA  - en
ID  - JMAG_2012_8_a3
ER  - 
%0 Journal Article
%A M. Poplavskyi
%T Universality at the edge for unitary matrix models
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 367-392
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/
%G en
%F JMAG_2012_8_a3
M. Poplavskyi. Universality at the edge for unitary matrix models. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 367-392. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/