Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2012_8_a3, author = {M. Poplavskyi}, title = {Universality at the edge for unitary matrix models}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {367--392}, publisher = {mathdoc}, volume = {8}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/} }
M. Poplavskyi. Universality at the edge for unitary matrix models. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 367-392. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/
[1] M.L. Mehta, Random Matrices, Academic Press, New York, 1991 | MR | Zbl
[2] A. Kolyandr, “On Eigenvalue Distribution of Invariant Ensembles of Random Matrices”, Dop. Ukr. Ac. Sci.: mathematics, 7 (1997), 14–20 | MR | Zbl
[3] F.J. Dyson, “Statistical Theory of Energy Levels of Complex Systems. I–III”, J. Math. Phys., 3 (1962), 140–175 | DOI | MR | Zbl
[4] L. Pastur and M. Shcherbina, “Universality of the Local Eigenvalue Statistics for a Class of Unitary Invariant Matrix Ensembles”, J. Stat. Phys., 86 (1997), 109–147 | DOI | MR | Zbl
[5] P. Deift, Orthogonal Polynomials, and Random Matrices: A Riemann–Hilbert Approach, CIMS, New York University, New York, 1999 | MR
[6] M. Poplavskyi, “Bulk Universality for Unitary Matrix Models”, J. Math. Phys., Anal., Geom., 5:3 (2009), 245–274 | MR | Zbl
[7] J. Baik, P. Deift, and K. Johansson, “On the Distribution of the Length of the Longest Increasing Subsequence of Random Permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178 | DOI | MR | Zbl
[8] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[9] M. Poplavskyi, “Asymptotic Behaviour of the Verblunsky Coefficients for the OPUC with a Varying Weight”, J. Math. Phys., 53:4 (2012), 043510 | DOI | MR | Zbl
[10] M.J. Cantero, L. Moral, and L. Velásquez, “Five-Diagonal Matrices and Zeros of Polynomials Orthogonal on the Unit Circle”, Linear Algebra and its Appl., 362 (2003), 29–56 | DOI | MR | Zbl
[11] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory and Part 2: Spectral Theory., AMS, Providence, 2005 | MR
[12] L. Pastur and M. Shcherbina, “On the Edge Universality of the Local Eigenvalue Statistics of Matrix Models”, Mat. fiz., analiz, geom., 10 (2003), 335–365 | MR | Zbl
[13] L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Mathematical surveys and monographs, 171, 2011 | DOI | MR | Zbl
[14] C. A. Tracy and H. Widom, “Level-Spacing Distributions and the Airy Kernel”, Comm. Math. Phys., 159:1 (1994), 151–174 | DOI | MR | Zbl
[15] A. B. J. Kuijlaars and K. D. T.-R. McLaughlin, “Generic Behaviour of the Density of States in Random Matrix Theory and Equilibrium Problems in the Presence of Real Analytic External Fields”, Commun. Pure Appl. Math., 53 (2000), 736–785 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[16] D. Zwillinger, Handbook of Differential Equations, 3rd edition, Academic Press, Boston, 1997 | MR
[17] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965