Universality at the edge for unitary matrix models
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 367-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the results on the $1/n$-expansion of the Verblunsky coefficients for a class of polynomials orthogonal on the unit circle with $n$ varying weight, we prove that the local eigenvalue statistic for unitary matrix models is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of four times differentiable potentials and of supports, consisting of one interval.
@article{JMAG_2012_8_a3,
     author = {M. Poplavskyi},
     title = {Universality at the edge for unitary matrix models},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {367--392},
     publisher = {mathdoc},
     volume = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/}
}
TY  - JOUR
AU  - M. Poplavskyi
TI  - Universality at the edge for unitary matrix models
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 367
EP  - 392
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/
LA  - en
ID  - JMAG_2012_8_a3
ER  - 
%0 Journal Article
%A M. Poplavskyi
%T Universality at the edge for unitary matrix models
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 367-392
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/
%G en
%F JMAG_2012_8_a3
M. Poplavskyi. Universality at the edge for unitary matrix models. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 367-392. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a3/

[1] M.L. Mehta, Random Matrices, Academic Press, New York, 1991 | MR | Zbl

[2] A. Kolyandr, “On Eigenvalue Distribution of Invariant Ensembles of Random Matrices”, Dop. Ukr. Ac. Sci.: mathematics, 7 (1997), 14–20 | MR | Zbl

[3] F.J. Dyson, “Statistical Theory of Energy Levels of Complex Systems. I–III”, J. Math. Phys., 3 (1962), 140–175 | DOI | MR | Zbl

[4] L. Pastur and M. Shcherbina, “Universality of the Local Eigenvalue Statistics for a Class of Unitary Invariant Matrix Ensembles”, J. Stat. Phys., 86 (1997), 109–147 | DOI | MR | Zbl

[5] P. Deift, Orthogonal Polynomials, and Random Matrices: A Riemann–Hilbert Approach, CIMS, New York University, New York, 1999 | MR

[6] M. Poplavskyi, “Bulk Universality for Unitary Matrix Models”, J. Math. Phys., Anal., Geom., 5:3 (2009), 245–274 | MR | Zbl

[7] J. Baik, P. Deift, and K. Johansson, “On the Distribution of the Length of the Longest Increasing Subsequence of Random Permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178 | DOI | MR | Zbl

[8] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[9] M. Poplavskyi, “Asymptotic Behaviour of the Verblunsky Coefficients for the OPUC with a Varying Weight”, J. Math. Phys., 53:4 (2012), 043510 | DOI | MR | Zbl

[10] M.J. Cantero, L. Moral, and L. Velásquez, “Five-Diagonal Matrices and Zeros of Polynomials Orthogonal on the Unit Circle”, Linear Algebra and its Appl., 362 (2003), 29–56 | DOI | MR | Zbl

[11] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory and Part 2: Spectral Theory., AMS, Providence, 2005 | MR

[12] L. Pastur and M. Shcherbina, “On the Edge Universality of the Local Eigenvalue Statistics of Matrix Models”, Mat. fiz., analiz, geom., 10 (2003), 335–365 | MR | Zbl

[13] L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random Matrices, Mathematical surveys and monographs, 171, 2011 | DOI | MR | Zbl

[14] C. A. Tracy and H. Widom, “Level-Spacing Distributions and the Airy Kernel”, Comm. Math. Phys., 159:1 (1994), 151–174 | DOI | MR | Zbl

[15] A. B. J. Kuijlaars and K. D. T.-R. McLaughlin, “Generic Behaviour of the Density of States in Random Matrix Theory and Equilibrium Problems in the Presence of Real Analytic External Fields”, Commun. Pure Appl. Math., 53 (2000), 736–785 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] D. Zwillinger, Handbook of Differential Equations, 3rd edition, Academic Press, Boston, 1997 | MR

[17] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965