Antipodal polygons and their group properties
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 357-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the groups of transformations which transform antipodal polygons into antipodal ones as well as their order and the number of equivalence classes of $n$-gons inscribed into the regular $(2n-1)$-gon.
@article{JMAG_2012_8_a2,
     author = {A. I. Medianik},
     title = {Antipodal polygons and their group properties},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {357--366},
     publisher = {mathdoc},
     volume = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a2/}
}
TY  - JOUR
AU  - A. I. Medianik
TI  - Antipodal polygons and their group properties
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 357
EP  - 366
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_a2/
LA  - en
ID  - JMAG_2012_8_a2
ER  - 
%0 Journal Article
%A A. I. Medianik
%T Antipodal polygons and their group properties
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 357-366
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_a2/
%G en
%F JMAG_2012_8_a2
A. I. Medianik. Antipodal polygons and their group properties. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 357-366. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a2/

[1] A.I. Medianik, “Antipodal $n$-gons Inscribed into the Regular $(2n-1)$-gon and Half-circulant Hadamard Matrices of Order $4n$”, Mat. fiz., analiz, geom., 11 (2004), 45–66 (Russian) | MR | Zbl

[2] A.I. Medianik, “Regular Simplex Inscribed into a Cube and Hadamard Matrix of Half-circulant Type”, Mat. fiz., analiz, geom., 4 (1997), 458–471 (Russian) | MR | Zbl

[3] H. Hasse, Vorlesungen uber Zahlentheorie, Izd. inostr. lit., Moscow, 1953 (Russian)

[4] A.G. Kurosh, Theory of Group, Nauka, Moscow, 1967 (Russian) | Zbl

[5] H.G. de Bruijn, “Theory of Polya's enumeration”, Applied combinatorial mathematics, Mir, Moscow, 1968, 61–106 (Russian)

[6] G. Polya, Mathematical Discovery, Nauka, Moscow, 1976 (Russian)