Homogenization of spectral problem on small-periodic networks
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 336-356

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogenization of a spectral problem on small-periodic networks with periodic boundary conditions is considered. Asymptotic expansions for eigenfunctions and corresponding eigenvalues on the network are constructed. The theorem is proved which is a justification of the asymptotic expansions for some eigenvalues and eigenfunctions of the problem on the network.
@article{JMAG_2012_8_a1,
     author = {A. S. Krylova and G. V. Sandrakov},
     title = {Homogenization of spectral problem on small-periodic networks},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {336--356},
     publisher = {mathdoc},
     volume = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/}
}
TY  - JOUR
AU  - A. S. Krylova
AU  - G. V. Sandrakov
TI  - Homogenization of spectral problem on small-periodic networks
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 336
EP  - 356
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/
LA  - en
ID  - JMAG_2012_8_a1
ER  - 
%0 Journal Article
%A A. S. Krylova
%A G. V. Sandrakov
%T Homogenization of spectral problem on small-periodic networks
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 336-356
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/
%G en
%F JMAG_2012_8_a1
A. S. Krylova; G. V. Sandrakov. Homogenization of spectral problem on small-periodic networks. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 336-356. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/