Homogenization of spectral problem on small-periodic networks
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 336-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogenization of a spectral problem on small-periodic networks with periodic boundary conditions is considered. Asymptotic expansions for eigenfunctions and corresponding eigenvalues on the network are constructed. The theorem is proved which is a justification of the asymptotic expansions for some eigenvalues and eigenfunctions of the problem on the network.
@article{JMAG_2012_8_a1,
     author = {A. S. Krylova and G. V. Sandrakov},
     title = {Homogenization of spectral problem on small-periodic networks},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {336--356},
     publisher = {mathdoc},
     volume = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/}
}
TY  - JOUR
AU  - A. S. Krylova
AU  - G. V. Sandrakov
TI  - Homogenization of spectral problem on small-periodic networks
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 336
EP  - 356
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/
LA  - en
ID  - JMAG_2012_8_a1
ER  - 
%0 Journal Article
%A A. S. Krylova
%A G. V. Sandrakov
%T Homogenization of spectral problem on small-periodic networks
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 336-356
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/
%G en
%F JMAG_2012_8_a1
A. S. Krylova; G. V. Sandrakov. Homogenization of spectral problem on small-periodic networks. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 336-356. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a1/

[1] V.G. Maz'ya and A.S. Slutskii, “Homogenization of a Differential Operator on a Fine Periodic Curvilinear Mesh”, Math. Nachr., 133 (1986), 107–133 | MR

[2] N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht–Boston–London, 1989 | Zbl

[3] A. Gavrilov, S. Nicaise, and O. Penkin, “Poincare’s Inequality on the Stratified Sets and Applications”, Progress in Nonlinear Differential Equations and Their Applications, 55 (2003), 195–213 | MR | Zbl

[4] S. Nicaise and O. Penkin, “Relationship Between the Lower Frequency Spectrum of Plates and Networks of Beams”, Math. Meth. Appl. Sci., 23 (2000), 1389–1399 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Yu.V. Pokornyi, O.M. Penkin, and V.L. Pryadiev, Differential Equations on Geometric Graphs, Fizmatlit, Moscow, 2004 (Russian) | Zbl

[6] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[7] T.A. Melnik, “Asymptotic Expansions of Eigenvalues and Eigenfunctions for Elliptic Boundary-Value Problems with Rapidly Oscillating Coefficients in a Perforated Cube”, J. Math. Sci., 75 (1995), 1646–1671 | DOI | MR

[8] V.A. Marchenko and E.Ya. Khruslov, Homogenization of Partial Differential Equations, Progr. Math. Phys., 46, Springer, Berlin, 2005 | MR

[9] G. Allaire and C. Conca, “Bloch Wave Homogenization and Spectral Asymptotic Analysis”, J. Math. Pures et Appli., 77 (1998), 153–208 | DOI | MR | Zbl

[10] Yu.D. Golovaty and S.S. Man'ko, “Schrödinger Operator with $\delta'$-potential”, Dopov. Nats. Akad. Nauk Ukr, Mat. Pryr. Tekh. Nauky, 5 (2009), 16–21 (Ukrainian) | Zbl

[11] A.S. Krylova and G.V. Sandrakov, “Investigation of Eigenvalues and Eigenfunctions for Arbitrary Fragments of Networks”, Journal of Numerical and Applied Mathematics, 101:2 (2010), 81–96 (Ukrainian)

[12] G.V. Sandrakov, “Averaging Principles for Equations with Rapidly Oscillating Coefficients”, Math. USSR-Sb., 68:2 (1991), 503–553 | DOI | MR

[13] L.A. Lyusternik, “On Difference Approximations of the Laplace Operator”, Usp. Mat. Nauk, 9:2(60) (1954), 3–66 ((Russian)) | MR | Zbl

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, v. 4, Analysis of Operators, Academic Press, New York, 1978 | MR | Zbl

[15] A.A. Samarskii, R.D. Lazarov, and V.L. Makarov, Difference Schemes for Differential Equations having Generalized Solutions, Vysshaya Shkola, Moskow, 1987 (Russian)

[16] M.I. Vishik and L.A. Lyusternik, “Regular Degeneration and Boundary Layer for Linear Differential Equations with Small Parameter”, Usp. Mat. Nauk, 12:5(77) (1957), 3–122 (Russian) | MR | Zbl