On the Neumann boundary controllability for the non-homogeneous string on a half-axis
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 307-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the equation of a vibrating non-homogeneous string, whose potential is not equal to a constant, is considered on a half-axis. The Neumann control of the class $L^\infty$ is considered at a point $x=0$. The control problem is studied in the Sobolev spaces. The sufficient conditions for nullcontrollability and approximate null-controllability at a free time $T>0$ are obtained for the given system. The controls solving these problems are found explicitly.
@article{JMAG_2012_8_a0,
     author = {K. S. Khalina},
     title = {On the {Neumann} boundary controllability for the non-homogeneous string on a half-axis},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {307--335},
     publisher = {mathdoc},
     volume = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_a0/}
}
TY  - JOUR
AU  - K. S. Khalina
TI  - On the Neumann boundary controllability for the non-homogeneous string on a half-axis
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 307
EP  - 335
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_a0/
LA  - en
ID  - JMAG_2012_8_a0
ER  - 
%0 Journal Article
%A K. S. Khalina
%T On the Neumann boundary controllability for the non-homogeneous string on a half-axis
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 307-335
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_a0/
%G en
%F JMAG_2012_8_a0
K. S. Khalina. On the Neumann boundary controllability for the non-homogeneous string on a half-axis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012), pp. 307-335. http://geodesic.mathdoc.fr/item/JMAG_2012_8_a0/

[1] W. Krabs and G. Leugering, “On Boundary Controllability of One-Dimension Vibrating Systems by $W_0^{1,p}$-Controls for $p\in[0,\infty)$”, Math. Methods Appl. Sci., 17 (1994), 77–93 | DOI | MR | Zbl

[2] M. Gugat, “Analytic Solutions of $L^\infty$-Optimal Control Problems for the Wave Equation”, J. Optim. Theor. Appl., 114:2 (2002), 397–421 | DOI | MR | Zbl

[3] M. Gugat and G. Leugering, “Solutions of $L^p$-Norm-Minimal Control Problems for the Wave Equation”, Comput. Appl. Math., 21:1 (2002), 227–244 | MR | Zbl

[4] M. Negreanu and E. Zuazua, “Convergence of Multigrid Method for the Controllability of a 1-d Wave Equation”, C. R. Math. Acad. Sci. Paris, 338:5 (2004), 413–418 | DOI | MR | Zbl

[5] M. Gugat, G. Leugering, and G. Sklyar, “$L^p$-Optimal Boundary Control for the Wave Equation”, SIAM J. Control Optim., 44:1 (2005), 49–74 | DOI | MR | Zbl

[6] M. Gugat, “Optimal Boundary Control of a String to Rest in a Finite Time with Continuous State”, ZAMM, 86:2 (2006), 134–150 | DOI | MR | Zbl

[7] L.V. Fardigola and K.S. Khalina, “Controllability Problems for the String Equation”, Ukr. Math. J., 59 (2007), 1040–1058 | DOI | MR | Zbl

[8] M. Gugat and G. Leugering, “$L^\infty$-norm Minimal Control of the Wave Equation: on the Weakness of the Bang-Bang Principle”, ESAIM: Control Optim. Calc. Var., 14:2 (2008), 254–283 | DOI | MR | Zbl

[9] O.Y. Emanuilov, “Boundary Controllability of Hyperbolic Equations”, Sib. Math. J., 41 (2000), 785–799 | DOI | MR | Zbl

[10] D.L. Russell, “Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions”, SIAM Review, 20:4 (1978), 639–739 | DOI | MR | Zbl

[11] J. Vancostenoble and E. Zuazua, “Hardy Inequalities, Observability, and Control for the Wave and Schrödinger Equations with Singular Potentials”, SIAM J. Math. Anal., 41:4 (2009), 1508–1532 | DOI | MR | Zbl

[12] V.A. Il'in and E.I. Moiseev, “On a Boundary Control at One End of a Process Described by the Telegraph Equation”, Dokl. Math., 66 (2002), 407–410 | Zbl

[13] K.S. Khalina, “Controllability Problems for the Non-Homogeneous String that is Fixed at the Right End Point and has the Dirichlet Boundary Control at the Left End Point”, J. Math. Phys. Anal. Geom., 7:1 (2011), 34–58 | MR | Zbl

[14] K.S. Khalina, “On the Neumann Boundary Controllability for the Non-Homogeneous String on a Segment”, J. Math. Phys. Anal. Geom., 7:4 (2011), 333–351 | MR

[15] G.M. Sklyar and L.V. Fardigola, “The Markov Power Moment Problem in Problems of Controllability and Frequency Extinguishing for the Wave Equation on a Half-Axis”, J. Math. Anal. Appl., 276:1 (2002), 109–134 | DOI | MR | Zbl

[16] G.M. Sklyar and L.V. Fardigola, “The Markov Trigonometric Moment Problem in Controllability Problems for the Wave Eequation on a Half-Axis”, Mat. fiz., analiz, geom., 9:2 (2002), 233–242 | MR | Zbl

[17] L.V.Fardigola, “Neumann Boundary Control Problem for the String Equation on a Half-Axis”, Dop. NAN Ukr., 10 (2009), 36–41 (Ukrainian) | MR | Zbl

[18] L.V. Fardigola, “Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant”, SIAM J. Control Optim., 47 (2008), 2179–2199 | DOI | MR | Zbl

[19] L.V. Fardigola, “Controllability Problems for the 1-$D$ Wave Equation on a Half-Axis with the Dirichlet Boundary Control”, ESAIM: Control Optim. Calc. Var., 18:03 (2012), 748–773 | DOI | MR | Zbl

[20] K.S. Khalina, “Boundary Controllability Problems for the Non-Homogeneous String on a Half-Axis”, Ukr. Mat. Zh., 64:4 (2012), 525–541 (Ukrainian) | DOI | MR | Zbl

[21] L. Schwartz, Théorie des distributions, v. I, II, Hermann, Paris, 1950–1951 | MR | Zbl

[22] S.G. Gindikin and L.R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl

[23] V.A. Marchenko, Sturm–Liouville Operators and Applications, Birkhauser Verlag, Basel–Boston–Stuttgart, 1986 | MR | Zbl

[24] P. Antosik, J. Mikusinski, and R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier–PWN, Amsterdam–Warszawa, 1973 | MR | Zbl

[25] V.S. Vladimirov, Equations of Mathematical Physics, Imported Pubn., 1985 | Zbl

[26] I.M. Gelfand and G.E. Shilov, Generalized Functions, v. 3, Theory of Differential Equations, Academic Press, New York, 1964