Space-like submanifolds with parallel normalized mean curvature vector field in de~Sitter space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 352-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

Space-like submanifolds, with dimension greater than three and with negative definite normal bundle in a general de Sitter space, of any index, are studied. For the compact space-like submanifolds whose mean curvature has no zero and the corresponding normalized vector field is parallel, under natural boundedness assumptions on the lengths of the gradient of the length of the mean curvature and the covariant derivative of the second fundamental form, it is proved that they must be totally umbilical. As an application, two characterizations of totally umbilical space-like submanifolds in terms of the scalar curvature and the length of its second fundamental form are given. All the results extend the previous ones obtained by Liu for the case of space-like hypersurfaces in de Sitter space of index one. In addition, for the complete space-like submanifolds, whose normalized mean curvature vector field is parallel, two characterizations of totally umbilical space-like submanifolds and hyperbolic cylinders are obtained.
@article{JMAG_2011_7_a2,
     author = {Shichang Shu},
     title = {Space-like submanifolds with parallel normalized mean curvature vector field in {de~Sitter} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {352--369},
     publisher = {mathdoc},
     volume = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_a2/}
}
TY  - JOUR
AU  - Shichang Shu
TI  - Space-like submanifolds with parallel normalized mean curvature vector field in de~Sitter space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 352
EP  - 369
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_a2/
LA  - en
ID  - JMAG_2011_7_a2
ER  - 
%0 Journal Article
%A Shichang Shu
%T Space-like submanifolds with parallel normalized mean curvature vector field in de~Sitter space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 352-369
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_a2/
%G en
%F JMAG_2011_7_a2
Shichang Shu. Space-like submanifolds with parallel normalized mean curvature vector field in de~Sitter space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 352-369. http://geodesic.mathdoc.fr/item/JMAG_2011_7_a2/

[1] J. Marsden, F. Tipler, “Maximal Hypersurfaces and Foliations of Constant Mean Curvature in General Relativity”, Phys. Rep., 66 (1980), 109–139 | DOI | MR

[2] S. Stumbles, “Hypersurfaces of Constant Mean Extrinsic Curvature”, Ann. Phys., 133 (1980), 28–56 | DOI | MR

[3] K. Akutagawa, “On Space-Like Hypersurfaces with Constant Mean Curvature in a de Sitter Space”, Math. Z., 196 (1987), 13–19 | DOI | MR | Zbl

[4] A. J. Goddard, “Some Remarks on the Existence of Space-Like Hypersurfaces of Constant Mean Curvature”, Math. Proc. Combrige Phil. Soc., 82 (1977), 489–495 | DOI | MR | Zbl

[5] S. Montiel, “An Integral Inequality for Compact Space-Like Hypersurfaces in De Sitter Space and Applications to the Case of Constant Mean Curvature”, Indiana Univ. Math. J., 37 (1988), 909–917 | DOI | MR | Zbl

[6] J. Ramanathan, “Complete Space-Like Hypersurfaces of Constant Mean Curvature in the de Sitter Space”, Indiana Univ. Math. J., 36 (1987), 349–359 | DOI | MR | Zbl

[7] Q. M. Cheng, “Complete Space-Like Submanifolds in a de Sitter Space with Parallel Mean Curvature Vector”, Math. Z., 206 (1991), 333–339 | DOI | MR | Zbl

[8] H. Li, “Global Rigidity Theorems of Hypersurfaces”, Ark. Mat., 35 (1997), 327–351 | DOI | MR | Zbl

[9] X. M. Liu, “Space-Like Hypersurfaces in the de Sitter Spaces”, J. Math. Phys., 42 (2001), 3965–3972 | DOI | MR | Zbl

[10] Y. Zheng, “Space-Like Hypersurfaces with Constant Scalar Curvature in the de Sitter Spaces”, Diff. Geom. Appl., 6 (1996), 51–54 | DOI | MR | Zbl

[11] F. E. C. Camargo, R. S. B. Chaves, L. A. M. De Sousa(jr.), “New Characterizations of Complete Space-Like Submanifolds in Semi-Riemannian Space Forms”, Kodai Math. J., 32 (2009), 209–230 | DOI | MR | Zbl

[12] Q. M. Cheng, “Complete Space-Like Hypersurfaces of a de Sitter Space with $r=kH$”, Mem. Fac. Sci. Kyushu Univ., 44 (1990), 67–77 | DOI | MR | Zbl

[13] S. C. Shu, “Complete Space-Like Hypersurfaces in a de Sitter Space”, Bull. Austral. Math. Soc., 73 (2006), 9–16 | DOI | MR | Zbl

[14] L. J. Alias, A. Romero, “Integral Formulas for Compact Space-Like $n$-Submanifolds in de Sitter Spaces”, Applications to the Parallel Mean Curvature Vector Case, 87 (1995), 405–416 | MR | Zbl

[15] T. Ishihara, “Maximal Space-Like Submanifolds of a Pseudo-Riemannian Space of Constant Curvature”, Michigan Math. J., 35 (1988), 345–352 | DOI | MR | Zbl

[16] Q. M. Cheng, S. Ishikawa, “Complete Maximal Space-Like Submanifolds”, Kodai Math. J., 20 (1997), 208–217 | DOI | MR | Zbl

[17] W. Santos, “Submanifolds with Parallel Mean Curvature Vector in Sphere”, Tôhoku Math. J., 46 (1994), 403–415 | DOI | MR | Zbl

[18] S. Y. Cheng, S. T. Yau, “Hypersurfaces with Constant Scalar Curvatrue”, Math. Ann., 225 (1977), 195–204 | DOI | MR | Zbl

[19] B. Y. Chen, “On the Surface with Parallel Mean Curvature Vector”, Indiana Univ. Math. J., 22 (1973), 655–666 | DOI | MR | Zbl

[20] S. T. Yau, “Submanifolds with Constant Mean Curvature”, Amer. J. Math., 96 (1974), 346–366 | DOI | MR | Zbl

[21] S. C. Shu, S. Y. Liu, “Complete Space-Like Submanifolds with Constant Scalar Curvature in a de Sitter Space”, Balkan J. Geom. Appl., 9 (2004), 82–91 | MR | Zbl

[22] N. Abe, N. Koike, S. Yamaguch, “Congruence Theorems for Proper Semi-Riemannin Hypersurfaces in a Real Space Form”, Yokohama Math. J., 35 (1987), 123–136 | MR | Zbl