Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2011_7_a1, author = {K. S. Khalina}, title = {On the {Neumann} boundary controllability for the non-homogeneous string on a segment}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {333--351}, publisher = {mathdoc}, volume = {7}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/} }
TY - JOUR AU - K. S. Khalina TI - On the Neumann boundary controllability for the non-homogeneous string on a segment JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2011 SP - 333 EP - 351 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/ LA - en ID - JMAG_2011_7_a1 ER -
K. S. Khalina. On the Neumann boundary controllability for the non-homogeneous string on a segment. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 333-351. http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/
[1] M. Gugat, G. Leugering, “$L^\infty$-Norm Minimal Control of the Wave Equation: on the Weakness of the Bang-Bang Principle”, ESAIM: COCV, 14 (2008), 254–283 | DOI | MR | Zbl
[2] M. Gugat, G. Leugering, “Solutions of $L^p$-Norm-Minimal Control Problems for the Wave Equation”, Comput. Appl. Math., 21 (2002), 227–244 | MR | Zbl
[3] M. Gugat, G. Leugering, G. Sklyar, “$L^p$-Optimal Boundary Control for the Wave Equation”, SIAM J. Control Optim., 44 (2005), 49–74 | DOI | MR | Zbl
[4] M. Gugat, “Optimal Boundary Control of a String to Rest in Finite Time with Continuous State”, Z. Angew. Math. Mech., 86 (2006), 134–150 | DOI | MR | Zbl
[5] L. V. Fardigola, K. S. Khalina, “Controllability Problems for the String Equation”, Ukr. Math. J., 59 (2007), 1040–1058 | DOI | MR | Zbl
[6] W. Krabs, G. Leugering, “On Boundary Controllability of One-Dimension Vibrating Systems by $W^{1,p}_0$-Controls for $p\in[0,\infty)$”, Math. Methods Appl. Sci., 17 (1994), 77–93 | DOI | MR | Zbl
[7] M. Negreanu, E. Zuazua, “Convergence of a Multigrid Method for the Controllability of a 1-d Wave Equation”, C.R. Math. Acad. Sci. Paris, 338 (2004), 413–418 | DOI | MR | Zbl
[8] I. Lasiecka, R. Triggiani, “Exact Controllability of the Wave Equation with Neumann Boundary Control”, Appl. Math. Optimization, 19 (1989), 243–290 | DOI | MR | Zbl
[9] D. L. Russell, “Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions”, SIAM Review, 20 (1978), 639–739 | DOI | MR | Zbl
[10] O. Y. Emanuilov, “Boundary Controllability of Hyperbolic Equations”, Sib. Math. J., 41 (2000), 785–799 | DOI | MR | Zbl
[11] V. A. Il'in, E. I. Moiseev, “On a Boundary Control at One End of a Process Described by the Telegraph Equation”, Dokl. Math., 66 (2002), 407–410 | Zbl
[12] K. S. Khalina, “Controllability Problems for the Non-Homogeneous String that is Fixed at the Right End Point and has the Dirichlet Boundary Control at the Left End Point”, J. Math. Phys. Anal. Geom., 7 (2011), 34–58 | MR | Zbl
[13] L. V. Fardigola, “Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant”, SIAM J. Control Optim., 47 (2008), 2179–2199 | DOI | MR | Zbl
[14] L. Hörmander, The Analysis of Linear Partial Differential Operators. Part III. Pseudo-Differential Operators, Springer-Verlag, Berlin–Heidelberg–New Tokyo, 1958
[15] G. M. Sklyar, L. V. Fardigola, “The Markov Trigonometric Moment Problem in Controllability Problems for the Wave Equation on a Half–Axis”, Mat. Fiz., Anal., Geom., 9 (2002), 233–242 | MR | Zbl
[16] Math. USSR Izv., 35 (1990), 203–220 | DOI | MR | Zbl
[17] V. S. Vladimirov, Equations of Mathematical Physics, Imported Pubn., 1985 | MR | Zbl
[18] L. Schwartz, Théorie Des Distributions. Part I, Hermann, Paris, 1950 ; Part II, 1951 | MR | Zbl
[19] S. G. Gindikin, L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl
[20] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhauser Verlag, Basel–Boston–Stuttgart, 1986 | MR | Zbl
[21] R. Courant, D. Gilbert, Methods of Mathematical Physics, v. 1, Wiley-Interscience, 1989
[22] AMS, Providence, R.I., 1977 | MR | Zbl
[23] I. M. Gelfand, G. E. Shilov, Generalized Functions, v. 3, Theory of Differential Equations, Academic Press, New York, 1964