On the Neumann boundary controllability for the non-homogeneous string on a segment
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 333-351

Voir la notice de l'article provenant de la source Math-Net.Ru

The control system $w_{tt}=w_{xx}-q(x)w$, $w_x(0,t)=u(t)$, $w_x(d,t)=0$, $x\in(0,d)$, $t\in(0,T)$, $d>0$, $0$ is considered. Here $q\in C^1[0,d]$, $q>0$, $q'_+(0)=q'_-(d)=0$, $u$ is a control, $|u(t)|\leq 1$ on $(0,T)$. The necessary and sufficient conditions of null-controllability and approximate null-controllability are obtained for this system. The controllability problems are considered in the modified Sobolev spaces. The controls that solve these problems are found explicitly. It is proved that among the solutions of the Markov trigonometric moment problem there are bang-bang controls solving the approximate null-controllability problem.
@article{JMAG_2011_7_a1,
     author = {K. S. Khalina},
     title = {On the {Neumann} boundary controllability for the non-homogeneous string on a segment},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {333--351},
     publisher = {mathdoc},
     volume = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/}
}
TY  - JOUR
AU  - K. S. Khalina
TI  - On the Neumann boundary controllability for the non-homogeneous string on a segment
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 333
EP  - 351
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/
LA  - en
ID  - JMAG_2011_7_a1
ER  - 
%0 Journal Article
%A K. S. Khalina
%T On the Neumann boundary controllability for the non-homogeneous string on a segment
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 333-351
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/
%G en
%F JMAG_2011_7_a1
K. S. Khalina. On the Neumann boundary controllability for the non-homogeneous string on a segment. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 333-351. http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/