On the Neumann boundary controllability for the non-homogeneous string on a segment
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 333-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

The control system $w_{tt}=w_{xx}-q(x)w$, $w_x(0,t)=u(t)$, $w_x(d,t)=0$, $x\in(0,d)$, $t\in(0,T)$, $d>0$, $0$ is considered. Here $q\in C^1[0,d]$, $q>0$, $q'_+(0)=q'_-(d)=0$, $u$ is a control, $|u(t)|\leq 1$ on $(0,T)$. The necessary and sufficient conditions of null-controllability and approximate null-controllability are obtained for this system. The controllability problems are considered in the modified Sobolev spaces. The controls that solve these problems are found explicitly. It is proved that among the solutions of the Markov trigonometric moment problem there are bang-bang controls solving the approximate null-controllability problem.
@article{JMAG_2011_7_a1,
     author = {K. S. Khalina},
     title = {On the {Neumann} boundary controllability for the non-homogeneous string on a segment},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {333--351},
     publisher = {mathdoc},
     volume = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/}
}
TY  - JOUR
AU  - K. S. Khalina
TI  - On the Neumann boundary controllability for the non-homogeneous string on a segment
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 333
EP  - 351
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/
LA  - en
ID  - JMAG_2011_7_a1
ER  - 
%0 Journal Article
%A K. S. Khalina
%T On the Neumann boundary controllability for the non-homogeneous string on a segment
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 333-351
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/
%G en
%F JMAG_2011_7_a1
K. S. Khalina. On the Neumann boundary controllability for the non-homogeneous string on a segment. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 333-351. http://geodesic.mathdoc.fr/item/JMAG_2011_7_a1/

[1] M. Gugat, G. Leugering, “$L^\infty$-Norm Minimal Control of the Wave Equation: on the Weakness of the Bang-Bang Principle”, ESAIM: COCV, 14 (2008), 254–283 | DOI | MR | Zbl

[2] M. Gugat, G. Leugering, “Solutions of $L^p$-Norm-Minimal Control Problems for the Wave Equation”, Comput. Appl. Math., 21 (2002), 227–244 | MR | Zbl

[3] M. Gugat, G. Leugering, G. Sklyar, “$L^p$-Optimal Boundary Control for the Wave Equation”, SIAM J. Control Optim., 44 (2005), 49–74 | DOI | MR | Zbl

[4] M. Gugat, “Optimal Boundary Control of a String to Rest in Finite Time with Continuous State”, Z. Angew. Math. Mech., 86 (2006), 134–150 | DOI | MR | Zbl

[5] L. V. Fardigola, K. S. Khalina, “Controllability Problems for the String Equation”, Ukr. Math. J., 59 (2007), 1040–1058 | DOI | MR | Zbl

[6] W. Krabs, G. Leugering, “On Boundary Controllability of One-Dimension Vibrating Systems by $W^{1,p}_0$-Controls for $p\in[0,\infty)$”, Math. Methods Appl. Sci., 17 (1994), 77–93 | DOI | MR | Zbl

[7] M. Negreanu, E. Zuazua, “Convergence of a Multigrid Method for the Controllability of a 1-d Wave Equation”, C.R. Math. Acad. Sci. Paris, 338 (2004), 413–418 | DOI | MR | Zbl

[8] I. Lasiecka, R. Triggiani, “Exact Controllability of the Wave Equation with Neumann Boundary Control”, Appl. Math. Optimization, 19 (1989), 243–290 | DOI | MR | Zbl

[9] D. L. Russell, “Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions”, SIAM Review, 20 (1978), 639–739 | DOI | MR | Zbl

[10] O. Y. Emanuilov, “Boundary Controllability of Hyperbolic Equations”, Sib. Math. J., 41 (2000), 785–799 | DOI | MR | Zbl

[11] V. A. Il'in, E. I. Moiseev, “On a Boundary Control at One End of a Process Described by the Telegraph Equation”, Dokl. Math., 66 (2002), 407–410 | Zbl

[12] K. S. Khalina, “Controllability Problems for the Non-Homogeneous String that is Fixed at the Right End Point and has the Dirichlet Boundary Control at the Left End Point”, J. Math. Phys. Anal. Geom., 7 (2011), 34–58 | MR | Zbl

[13] L. V. Fardigola, “Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant”, SIAM J. Control Optim., 47 (2008), 2179–2199 | DOI | MR | Zbl

[14] L. Hörmander, The Analysis of Linear Partial Differential Operators. Part III. Pseudo-Differential Operators, Springer-Verlag, Berlin–Heidelberg–New Tokyo, 1958

[15] G. M. Sklyar, L. V. Fardigola, “The Markov Trigonometric Moment Problem in Controllability Problems for the Wave Equation on a Half–Axis”, Mat. Fiz., Anal., Geom., 9 (2002), 233–242 | MR | Zbl

[16] Math. USSR Izv., 35 (1990), 203–220 | DOI | MR | Zbl

[17] V. S. Vladimirov, Equations of Mathematical Physics, Imported Pubn., 1985 | MR | Zbl

[18] L. Schwartz, Théorie Des Distributions. Part I, Hermann, Paris, 1950 ; Part II, 1951 | MR | Zbl

[19] S. G. Gindikin, L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl

[20] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhauser Verlag, Basel–Boston–Stuttgart, 1986 | MR | Zbl

[21] R. Courant, D. Gilbert, Methods of Mathematical Physics, v. 1, Wiley-Interscience, 1989

[22] AMS, Providence, R.I., 1977 | MR | Zbl

[23] I. M. Gelfand, G. E. Shilov, Generalized Functions, v. 3, Theory of Differential Equations, Academic Press, New York, 1964