Classical solution of a degenerate elliptic-parabolic free boundary problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 295-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

A free boundary problem describing a filtration process in a porous medium is considered. An unknown interface divides the filtration domain into elliptic and parabolic regions. In the parabolic region the governing equation is degenerate. The existence of a smooth solution in the weighted Hölder space is proved
@article{JMAG_2011_7_a0,
     author = {B. V. Bazaliy and S. P. Degtyarev},
     title = {Classical solution of a degenerate elliptic-parabolic free boundary problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {295--332},
     publisher = {mathdoc},
     volume = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_a0/}
}
TY  - JOUR
AU  - B. V. Bazaliy
AU  - S. P. Degtyarev
TI  - Classical solution of a degenerate elliptic-parabolic free boundary problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 295
EP  - 332
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_a0/
LA  - en
ID  - JMAG_2011_7_a0
ER  - 
%0 Journal Article
%A B. V. Bazaliy
%A S. P. Degtyarev
%T Classical solution of a degenerate elliptic-parabolic free boundary problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 295-332
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_a0/
%G en
%F JMAG_2011_7_a0
B. V. Bazaliy; S. P. Degtyarev. Classical solution of a degenerate elliptic-parabolic free boundary problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011), pp. 295-332. http://geodesic.mathdoc.fr/item/JMAG_2011_7_a0/

[1] B. V. Bazaliy, S. P. Degtyarev, “Solvability of a Problem with an Unknown Boundary Between the Domains of a Parabolic and an Elliptic Equations”, Ukr. Math. J., 41:10 (1989), 1155–1160 | DOI | MR

[2] B. V. Bazaliy, S. P. Degtyarev, “On the Classical Solvability of the Multidimensional Stefan Problem for Convective Motion of a Viscous Incompressible Fluid”, Math. USSR Sb., 60:1 (1988), 11–17 | DOI | MR | Zbl

[3] B. V. Bazaliy, A. Friedman, “A Free Boundary Problem for an Elliptic-Parabolic System: Application to a Model of Tumor Growth”, Commun. Part. Diff. Eq., 28:3–4 (2003), 517–560 | DOI | MR | Zbl

[4] M. Bertsch, J. Hulshof, “Regularity Results for an Elliptic-Parabolic Free Boundary Problem”, Trans. Amer. Math. Soc., 297:1 (1986), 337–350 | DOI | MR | Zbl

[5] C. J. Van Duijn, “Nonstationary Filtration in Partially Saturated Porous Media: Contunuity of the Free Boundary”, Arch. Rational Mech. Anal., 79:3 (1982), 261–265 | DOI | MR | Zbl

[6] C. J. Van Duijn, J. Hulshof, “An Elliptic-Parabolic Free Boundary Problem with a Nonlocal Boundary Condition”, Arch. Rational Mech. Anal., 99:1 (1987), 61–73 | DOI | MR | Zbl

[7] C. J. Van Duijn, L. A. Peletier, “Nonstationary Filtration in Partially Saturated Porous Media”, Arch. Rational Mech. Anal., 78:2 (1982), 173–198 | DOI | MR | Zbl

[8] A. Fasano, M. Primicerio, “Liquid Flow in Partially Saturated Porous Media”, J. Inst. Math. Appl., 23:4 (1979), 503–517 | DOI | MR | Zbl

[9] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the fourth Russian edition, Fifth edition, Academic Press, Inc., Boston, MA, 1994, 1204 pp. | MR | Zbl

[10] J. Hulshof, “An Elliptic-Parabolic Free Boundary Problem: Continuity of the Interface”, Proc. Royal Soc. Edinburg, 106A:3 (1987), 327–339 | DOI | MR | Zbl

[11] J. Hulshof, L. A. Peletier, “An Elliptic-Parabolic Free Boundary Problem”, Nonlinear Anal: Theory, Method Appl., 10:12 (1986), 1327–1346 | DOI | MR | Zbl

[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tceva, Linear and Guasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, AMS, Providence, R.I., 1967 | MR

[13] P. Mannucci, J. L. Vazquez, “Viscosity Solutions for Elliptic-Parabolic Problems”, Nonlinear Differ. Equ. Appl., 14:1–2 (2007), 75–90 | DOI | MR | Zbl