Long-time asymptotic behavior of an integrable model of the stimulated Raman scattering with periodic boundary data
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 386-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{JMAG_2009_5_a4,
     author = {E. A. Moskovchenko and V. P. Kotlyarov},
     title = {Long-time asymptotic behavior of an integrable model of the stimulated {Raman} scattering with periodic boundary data},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {386--395},
     publisher = {mathdoc},
     volume = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_a4/}
}
TY  - JOUR
AU  - E. A. Moskovchenko
AU  - V. P. Kotlyarov
TI  - Long-time asymptotic behavior of an integrable model of the stimulated Raman scattering with periodic boundary data
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 386
EP  - 395
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_a4/
LA  - en
ID  - JMAG_2009_5_a4
ER  - 
%0 Journal Article
%A E. A. Moskovchenko
%A V. P. Kotlyarov
%T Long-time asymptotic behavior of an integrable model of the stimulated Raman scattering with periodic boundary data
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 386-395
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_a4/
%G en
%F JMAG_2009_5_a4
E. A. Moskovchenko; V. P. Kotlyarov. Long-time asymptotic behavior of an integrable model of the stimulated Raman scattering with periodic boundary data. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 386-395. http://geodesic.mathdoc.fr/item/JMAG_2009_5_a4/

[1] A. S. Fokas, C. R. Menyuk, “Integrability and Self-Similarity in Transient Stimulated Raman Scattering”, J. Nonlinear Sci., 9 (1999), 1–31 | DOI | MR | Zbl

[2] C. R. Menyuk, T. Seidman, “Transient Stimulated Raman Scattering”, SIAM J. Math. Anal., 23 (1992), 346–363 | DOI | MR | Zbl

[3] J. Leon, A. V. Mikhailov, “Raman Soliton Generation from Laser Inputs in SRS”, Phys. Lett. A, 253 (1999), 33–40 | DOI

[4] A. S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. R. Soc. Lond. A, 453 (1997), 1411–1443 | DOI | MR | Zbl

[5] A. Boutet de Monvel, A. S. Fokas, D. G. Shepelsky, “The mKdV Equation on the Half-Line”, J. Inst. Math., 3:2 (2004), 139–164 | MR | Zbl

[6] A. R. Its, V. E. Petrov, “ ‘Isomonodromic’' Solutions of the Sine-Gordon Equation and the Time Asymptotics of its Rapidly Decreasing Solutions”, Dokl. Akad. Nauk SSSR, 265:6 (1982), 1302–1306 (Russian) | MR | Zbl

[7] E. A. Moscovchenko, V. P. Kotlyarov, “A New Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A.: Math. Gen., 39 (2006), 14591–14610 | DOI | MR

[8] E. A. Moskovchenko, “Simple Periodic Boundary Data and Riemann–Hilbert Problem for Integrable Model of the Stimulated Raman Scattering”, J. Math. Phys., Anal., Geom., 5:1 (2009), 82–103 | MR

[9] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV Equation”, Ann. Math., 137 (1993), 295–368 | DOI | MR | Zbl

[10] A. Boutet de Monvel, A. Its, V. P. Kotlyarov, Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition, C.R. Math. Acad. Sci. Paris, 345/11, 2007 ; Preprint BiBoS 08-04-287 | MR | Zbl