Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 375-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

A spectral problem describing small transversal vibrations of an elastic rod with a concentrated mass (bead) at the right end subject to viscous friction is considered. The left end is hinge-jointed. The location of the spectrum of this problem is described and the asymptotic formula of the eigenvalues is obtained.
@article{JMAG_2009_5_a3,
     author = {I. V. Gorokhova},
     title = {Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {375--385},
     publisher = {mathdoc},
     volume = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/}
}
TY  - JOUR
AU  - I. V. Gorokhova
TI  - Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 375
EP  - 385
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/
LA  - en
ID  - JMAG_2009_5_a3
ER  - 
%0 Journal Article
%A I. V. Gorokhova
%T Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 375-385
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/
%G en
%F JMAG_2009_5_a3
I. V. Gorokhova. Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 375-385. http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/

[1] L. Collatz, Eigenwertaufgaben mit Technichen Anwendungen, Akad. Verlagsgesellschaft Geest und Porteg, Leipzig, 1963 | MR

[2] J. B. Amara, “Fourth Order Spectral Problem with Eigenvalue in the Boundary Conditions”, Funct. Anal. Appl.; V. Kadets, W. Zelazko, North-Holland Math. Stud., 197, 2004, 49–58 | DOI | MR

[3] Takemura Kazuo, Kametaka Yochinori, Nagai Atsushi, N. D. Kopachevsky, “Pozitivity and Hierarchical Structure of Green Functions for Bending of a Beam: Boundary Value Problems with Boundary Conditions of not Simple Type”, Far East J. Math. Sci., 25:12 (2007), 201–230 | MR | Zbl

[4] A. V. Yakovlev, “Small Transversal Vibrations of a Viscous-Elastic Beam with a Load at the End”, Sci. Notices, V. I. Vernadskii Taurida National Univ., 2:15(54) (2006), 105–114

[5] M. Möller, V. Pivovarchik, “Spectral Properties of a Fourth Order Differential Equation”, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 341–366 | DOI | MR | Zbl

[6] M. A. Naimark, Linear Differential Operators, Dover Pubns, Amsterdam, 2009 | MR

[7] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math. Soc., Providence, 1988 | MR | Zbl

[8] M. G. Krein, H. Langer, “On sone Mathematical Principles in the Linear Theory of Damped Oscillations of Continua. I”, Ibid., 1 (1978), 364–399 ; “II”, 539–566 | MR | Zbl | MR | Zbl

[9] V. N. Pivovarchik, “On Spectra of a Certain Class of Quadratic Operator Pencils wiht Onedimensional Linear Part”, Ukr. Math. J., 59 (2007), 702–715 | DOI | MR