Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2009_5_a3, author = {I. V. Gorokhova}, title = {Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {375--385}, publisher = {mathdoc}, volume = {5}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/} }
TY - JOUR AU - I. V. Gorokhova TI - Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2009 SP - 375 EP - 385 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/ LA - en ID - JMAG_2009_5_a3 ER -
%0 Journal Article %A I. V. Gorokhova %T Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2009 %P 375-385 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/ %G en %F JMAG_2009_5_a3
I. V. Gorokhova. Small transversal vibrations of elastic rod with point mass at one end subject to viscous friction. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 375-385. http://geodesic.mathdoc.fr/item/JMAG_2009_5_a3/
[1] L. Collatz, Eigenwertaufgaben mit Technichen Anwendungen, Akad. Verlagsgesellschaft Geest und Porteg, Leipzig, 1963 | MR
[2] J. B. Amara, “Fourth Order Spectral Problem with Eigenvalue in the Boundary Conditions”, Funct. Anal. Appl.; V. Kadets, W. Zelazko, North-Holland Math. Stud., 197, 2004, 49–58 | DOI | MR
[3] Takemura Kazuo, Kametaka Yochinori, Nagai Atsushi, N. D. Kopachevsky, “Pozitivity and Hierarchical Structure of Green Functions for Bending of a Beam: Boundary Value Problems with Boundary Conditions of not Simple Type”, Far East J. Math. Sci., 25:12 (2007), 201–230 | MR | Zbl
[4] A. V. Yakovlev, “Small Transversal Vibrations of a Viscous-Elastic Beam with a Load at the End”, Sci. Notices, V. I. Vernadskii Taurida National Univ., 2:15(54) (2006), 105–114
[5] M. Möller, V. Pivovarchik, “Spectral Properties of a Fourth Order Differential Equation”, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 341–366 | DOI | MR | Zbl
[6] M. A. Naimark, Linear Differential Operators, Dover Pubns, Amsterdam, 2009 | MR
[7] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math. Soc., Providence, 1988 | MR | Zbl
[8] M. G. Krein, H. Langer, “On sone Mathematical Principles in the Linear Theory of Damped Oscillations of Continua. I”, Ibid., 1 (1978), 364–399 ; “II”, 539–566 | MR | Zbl | MR | Zbl
[9] V. N. Pivovarchik, “On Spectra of a Certain Class of Quadratic Operator Pencils wiht Onedimensional Linear Part”, Ukr. Math. J., 59 (2007), 702–715 | DOI | MR