Ruled surfaces as pseudospherical congruences
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 359-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{JMAG_2009_5_a2,
     author = {V. O. Gorkavyy and O. M. Nevmerzhitska},
     title = {Ruled surfaces as pseudospherical congruences},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {359--374},
     publisher = {mathdoc},
     volume = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_a2/}
}
TY  - JOUR
AU  - V. O. Gorkavyy
AU  - O. M. Nevmerzhitska
TI  - Ruled surfaces as pseudospherical congruences
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 359
EP  - 374
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_a2/
LA  - en
ID  - JMAG_2009_5_a2
ER  - 
%0 Journal Article
%A V. O. Gorkavyy
%A O. M. Nevmerzhitska
%T Ruled surfaces as pseudospherical congruences
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 359-374
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_a2/
%G en
%F JMAG_2009_5_a2
V. O. Gorkavyy; O. M. Nevmerzhitska. Ruled surfaces as pseudospherical congruences. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 359-374. http://geodesic.mathdoc.fr/item/JMAG_2009_5_a2/

[1] Yu. A. Aminov, Geometry of Submanifolds, Gordon and Breach, Amsterdam, 2002 | MR

[2] K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Pitman Monographs and Surveys in Pure and Appl. Math., 93, Longman, London, 2000 | MR

[3] C. Rogers, W. K. Schief, Backlund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Appl. Math., 30, Cambridge Univ. Press, Cambridge, 2002 | MR

[4] K. Tenenblat, C.-L. Terng, “Backlund Theorem for $n$-Dimensional Submanifolds of $R^{2n-1}$”, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl

[5] Yu. A. Aminov, “Bianchi Transformations for Domains of Many-Dimensional Lobachevsky Space”, Ukr. Geom. Sb., 21 (1978), 3–5 | MR | Zbl

[6] C.-L. Terng, “A Higher Dimensional Generalization of the Sine-Gordon Equation and its Soliton Theory”, Ann. Math., 111 (1980), 491–510 | DOI | MR | Zbl

[7] A. A. Borisenko, Intrinsic and Extrinsic Geometries of Multy-Dimensional Submanifolds, Examen, Moscow, 2003